15. October 2016 · Comments Off on Bitcoin and Cryonics · Categories: Cryonics, Society

In this article, I want to introduce you to Bitcoin, a topic that fascinates me almost as much as cryonics. Many Cryonics readers will have already heard of Bitcoin (certainly my first introductions to it were by members of the cryonics community), but in order to go on and talk about cryonics-specific uses for Bitcoin, I think it is important to give the actual technology a proper introduction, as well as a brief history of its creation and development. But perhaps most importantly, cryonicists have had important involvement in Bitcoin’s inception and spread, and through the backward-looking lens of history, I believe this is a connection the cryonics community will be proud of. [At this point, I think it’s important to make the following disclaimer: I own bitcoins, and am very optimistic about their future, both in value, and their potential as a highly positive disruption in the global financial system.]

What is Bitcoin?[1]

A “peer-to-peer electronic cash system” is what Bitcoin’s creator, Satoshi Nakamoto called his idea in its initial design paper. The more wieldy name for Bitcoin and the many, lesser-known “altcoins” that have been developed in Bitcoin’s wake, is cryptocurrency, the prefix crypto—referring to the fundamental role cryptography plays in its operation. Bitcoin is sometimes called a “virtual currency,” and while this is certainly an easier way of communicating the general idea to the uninitiated, it does ignore what differentiates Bitcoin from other, equally “virtual” currencies in online games, such as World of Warcraft “gold” that has acquired real-world value (to the game’s players, at least) and is traded for regular currency. Online merchants such as Amazon have also developed virtual currencies specific to their brands, as the next paradigm of prepaid gift cards and loyalty rewards programs. But all these other sorts of virtual currencies are ultimately controlled by a single entity— not unlike governments’ control over their local currencies—whereas Bitcoin operates by consensus over a distributed peer-to-peer network. So bitcoins, World of Warcraft gold, and Amazon Coins are really apples, oranges, and bananas.

Others reject the “currency” characterization entirely, instead conceiving of Bitcoin as a “digital commodity.” But to me, that simply begs the question of what features of the bitcoins themselves has commodified them? If it is their usefulness as a means of transferring value, are they not a currency first, and a commodity second? There is something of a chicken-and-egg aspect to that debate, so I will leave it to the economists and philosophers. Personally, I think it is more useful to define Bitcoin descriptively, in which case Bitcoin is a globally distributed ledger of transactions of a unit called “a bitcoin.” A bitcoin has whatever value (in other currencies, or goods) that those who concur in Bitcoin’s utility agree it has— voting with their traditional currencies by purchasing bitcoins with them. And so far, the global market’s valuation of Bitcoin has increased by at least six orders of magnitude since it was released into the world in early 2009.

Now, the distributed ledger which forms the backbone of the Bitcoin network actually has a name of its own— the “blockchain”—so called because transactions between addresses of the network are recorded in the ledger in sequential “blocks” of data one megabyte in size. The transactions are collected into these blocks, verified for validity, and added to the blockchain by specialized users of the network, who must first “solve” the block by running it through a computationally intensive process called “hashing” until a particular result is reached, at which point that block is added to the chain and that user is rewarded with new bitcoins, along with any of the (optional) transaction fees included with the transactions in that block. [2] Because doing this work that keeps the network functioning is incentivized with the block reward, this whole process is referred to as “mining” bitcoins. The block reward halves approximately every four years, and the number of bitcoins will never exceed 21 million, though they can be subdivided further by adding additional decimal places as necessary.

Bitcoins reside at bitcoin addresses, which are rather unsexy strings of letters and numbers, like 14cD6PwopFAoeyPwtGAsSiMwJcLxS9ePC. However, these addresses can be represented as QR codes like the one to the left, which are a little more sender-friendly. Bitcoin is often referred to as an “anonymous” currency, but this really isn’t true. Being a public ledger, it is only an anonymous system for a particular user if there is no way of tying their real-world identity to the transaction(s) that they wish to be anonymous. However, in contrast with IP addresses on the internet, one can have as many bitcoin addresses as one likes (and the private keys entitling them to transact with the bitcoins at those addresses), without ever paying for them or asking for someone’s permission to have one. This is because the bitcoin addresses and associated private keys are all generated algorithmically, and the algorithm used to define them provides for many more than enough for everyone on the planet (approximately 2×10^38 per capita, at present). Thus, pseudonymity can be approximated by never using the same address twice, and this behavior is built into most Bitcoin wallet software by default.

A Very Abridged History of Bitcoin

Nakamoto’s original design paper was posted to Perry E. Metzger’s cryptography mailing list in late 2008. [3] The “genesis block” of the chain, containing the first 50 bitcoins, was brought into existence by Nakamoto in January of 2009, with the first version of the Bitcoin client released a week thereafter. Interest in Nakamoto’s creation was sufficient to attract other developers to refine the protocol and the client, and design new clients—and of course mine for bitcoins, which at the time could be done with ordinary CPUs. In those very early days, it was not easy to pin any particular value on bitcoins themselves, but a now famous $25 pizza was ordered by one Bitcoin user at the request of another, in exchange for Ƀ10,000 in May of 2010. (At today’s exchange rate, that pizza would now be worth nearly $1.3 million.) Two months later one bitcoin surpassed $0.01 in value, and later still in 2010, after the first major bitcoin exchange, Mt. Gox opened its virtual doors, $0.10. Bitcoin reached parity with the dollar in early 2011, hit $10 on June 2 of that year, and then “bubbled” up to over $30 within the next six days, before “popping” back to $10 and retreating all the way back down to $2 over the next six months. But by the second half of 2012, Bitcoin was back over $10, and jumped another order of magnitude to $100 during the first half of this year, shooting over $200 briefly in April before resettling to a (slightly) less volatile hover pattern around $100 over the months following. This more recent “bubble” received significantly more mainstream media attention, despite having a significantly more stable outcome than the 2011 bubble.

Personally, I prefer the characterization of these sudden upward price movements followed by downward corrections before resuming the long-term upward trend, as “hypermonetization” [4] events, as opposed to bubbles. Unlike tulips (the famous economic bubble example), Bitcoin has far clearer fundamentals supporting its increasing valuation by the global market. The more people that are exposed to the network and start using it, the bigger it gets, making it less vulnerable to attack, more useful as a currency, and more secure as a store of value (there is some debate around this, particularly around a possible trend towards centralization of mining on account of the more specialized and expensive equipment now required, but I think the general idea holds true). Furthermore, while the service-layer infrastructure around Bitcoin it is still somewhat lacking—notably widespread, easy-to-use ways of turning traditional  currencies into bitcoins and back again [5] — the existing financial transactions paradigm simply cannot compete with Bitcoin when it comes to transmitting wealth across the world as cheaply as to someone standing immediately next to you. Even PayPal has had to take note, and Western Union, too. [6] In addition to becoming an accepted form of payment with more and more online merchants (and even some brickand-mortar ones) every day, bitcoin mining has become an industry in its own right, due to the ever increasing difficulty of the mining algorithm. Difficulty increases are a design feature of the protocol intended to secure it from a malicious entity simply amassing enough computing power to centralize control over the network, thereby destroying its primary fundamental value. Thus, the required hardware for anyone looking to derive profit from mining has graduated from regular old CPUs, to high-end GPUs, and now finally to chips specifically designed for the task (application-specific integrated circuits, or ASICs). Setting up and maintaining GPU “farms,” and now, more recently, developing and deploying ASICs has required significant investment, precipitating the arrival of “virtual” companies that raise capital through Bitcoin IPOs on virtual securities exchanges, sharing the profits back with the “virtual” shareholders. (This of course being a securities regulator’s nightmare, but we’ll leave that alone for now.)

Early Connections to Cryonics

By now, you are probably wondering how any of this relates to cryonics. Perhaps it would surprise you to know that one of Alcor’s long-time board members’ names is written right into the Bitcoin protocol? Indeed, without Ralph Merkle’s work in cryptography some decades prior, Bitcoin might not even exist—or at least not in its current form. Public key cryoptography, for which Merkle was inducted into the 2011 National Inventors Hall of Fame, is a core enabling technology of Bitcoin. A cryptographic data structure called a “Merkle tree” (and associated “Merkle root”) is an integral part of the bitcoin hashing algorithm, so our illustrious Mr. Merkle’s work is essentially stamped on every block in the blockchain. While Merkle’s website does not indicate a personal interest in bitcoins, it does include the following foreboding prediction:

“The likely development of quantum computers (QCs) in the next one or two decades would compromise all widely used publickey cryptosystems (PKCSs)… [I]t may already be too late to deploy a QCresistant PKCS standard throughout the world before quantum computers become available. […] The developers of a quantum computer are likely to keep its existence secret for some time, during which time they could freely forge signatures for any system that was not QC-resistant: signatures that most would find hard to dispute.”

That being said, the Bitcoin community is aware of the threat quantum computing could represent (a threat to which the traditional financial transactions insitutions, i.e. banks, credit card networks, etc, will be highly vulnerable as well), and already has ideas of how to upgrade the protocol’s security when necessary. [7] Regardless, Ralph Merkle’s contributions to cryptography have made possible a major leap forward in the very idea of what money can be.

But the early connection between Bitcoin and cryonics goes further. A man named Hal Finney was an early responder to Nakamoto’s initial posts to the cryptography mailing list, and ended up being the recipient of the very first bitcoin transaction, from Nakamoto himself in early 2009. Finney also identified a specific kind of double-spend attack possible against merchants who accepted payments without waiting for network confirmations of the transaction, which has been given the name the “Finney attack.” Finney was also a member of the Less Wrong online community (created by well-known cryonicist and Friendly AI researcher, Eliezer Yudkowsky), and later in 2009, Finney posted to Less Wrong that he had been diagnosed with ALS. [8] In the responses to Finney’s post, Yudkowsky asked him if he had cryonics arrangements in place, to which Finney replied that he had been an Alcor member for 20 years. Finney’s involvement on Bitcoin forums and Less Wrong did diminish over time, but after the 2013 price rise, Finney made a post on bitcointalk.org relating his early involvement in Bitcoin’s development, his diagnosis with ALS, and his continued work developing more secure Bitcoin wallet clients. [9]

The Mystery of Satoshi Naka

An interesting twist in the story of Bitcoin is that the true identity of its creator is not known. Satoshi Nakamoto’s writing style, and the timing of his daily activity/ inactivity cycles have led many to doubt that he was the 37-year old Japanese man he claimed to be, with some even suspecting that Nakamoto was a singular virtual identity masking a group effort. Having written the first Bitcoin client himself, Nakamoto’s coding has been described as “elegant in some ways and inelegant in others,” potentially indicating that Nakamoto was not a professional programmer, though not a complete amateur either.[10] Whoever he/she/they was or were, Nakamoto’s involvement in the project waned over the course of 2010, and the task of continuing to refine Bitcoin has become a collaborative effort clustered around one person who is paid to develop the protocol full-time.[11]

But in honour of Satoshi Nakamoto’s grand idea, the (current) smallest subunit of a bitcoin, Ƀ0.00000001, is called a satoshi. And boy-oh-boy, does Satoshi ever have a lot of satoshis! As one of the earliest dedicated users and miners, at a time when mining could be done with ordinary CPUs and the network was not nearly as distributed as today, Nakamoto amassed quite a hoard of bitcoins. However, since his disappearance in 2010, the lion’s share of the bitcoins traced back to the protocol’s creator (over a million of them) were never spent. [12] Depending on the real-world identity of the person or persons behind “Satoshi Nakamoto,” and the underlying motives behind creating Bitcoin and then retreating away right as it started attracting real attention to itself, maybe those coins will never be spent.

Legal Status of Bitcoins

Part of the reason Bitcoin is difficult for lawmakers and regulators to categorize is because it does not lend itself to analogy very well. Or perhaps it does this too well—that is to say Bitcoin can be meaningfully analogized to different and competing schemas. Fundamentally, as I discussed in the first part, Bitcoin is a ledger of transactions. But normally, a ledger of transactions refers to a unit which represents some physical thing, and even if that physical thing rarely actually changes hands in the vast majority of transactions of it, somewhere there is some form of property, in the legal sense, that the ledger is tracking. Even where this property is just a “right” to something else (think shares in a company), there’s usually some material thing (often money) at the end of the line.

Even bank notes and coins, the physical manifestations of traditional currency, are “referring” to something else—namely the respective territorial government’s acceptance of that currency for payment of taxes, etc., and its authority to insist that merchants within the territory accept the currency as “legal tender.” Sometimes the governments will have some kind of reserve of another valuable thing (like gold) in place to “back” the value of its currency, but in more recent times this has become less common, and a territory’s currency has value by government fiat. Bitcoin defies all this. There is nothing “backing” Bitcoin, only communal trust in the protocol itself, which is basically faith in cryptography and in the Bitcoin community’s collective will to see the project succeed. And so, Bitcoin defies or at least confuses the current legal conceptualization of what property is. Could it be said that a Bitcoin user has “rights” to particular bitcoins, even though they don’t actually exist anywhere other than on a ledger? Or does it make more sense to say they have exclusive rights to the address and private key that they have claimed for themselves—even though those were generated by a publicly available algorithm, with some real (but very, very, very small) chance that someone else could randomly generate the exact same ones, and be able to transact any bitcoins happening to be there..?

Other virtual currencies, like World of Warcraft “gold” and Amazon coins, while conceptualized as currency, derive their value, and any legal rights their users may have, from the contract agreed upon between issuer and user (however cursory that agreement may have been). Often, these agreements actually bar the user from trading the virtual currency to another user in exchange for traditional currency, and the issuer reserves the right to unilaterally change the contract on notice to the user. Nevertheless, the users of these currencies do have some legal rights, arising out of contract.

Bitcoin defies this too. There is no single issuer, and no one entity has the ability to change the Bitcoin protocol. The limit of the “powers” of those most closely involved with developing the protocol, is to release an update to the basic client, which is open source, and suggest that the update be adopted by the many users of the network—miners in particular. For major changes, all users must accept the update or risk a “hard fork” of the blockchain, with two parallel ledgers each purporting to be a true representation of the state of the network. Thus, it needs to already be a foregone conclusion that a large majority of the network will accept such major changes before it is even released, else doing so will undermine the project itself. In legal terms, we could perhaps conceive of the Bitcoin protocol as a multi-party, majority-guided, consensus-driven contract regarding the formulation of a ledger of transmissions of a unit that all the contractors accept have some value—value derived from the nature of the system thus described. But this “contract” is written in computer code, and is constantly self-executing (or to continue the metaphor, self-enforcing) in real time all the world over. And far from a simple contract of sale or services, or even a complex corporate transaction, the Bitcoin contract describes an entire economic system, not tied in any way to the geographic territories its users reside in, or, more importantly, the laws of those territories. Bitcoin is living law, created, sustained and refined by the supranational community of its users.

Now, with all that said, it is still completely within the purview of courts and lawmakers to “admit” bitcoins as a form of property. And while it is still early days, it appears that at least one court has done just that. In an early ruling in the prosecution of a rather notorious Ponzi scheme involving Bitcoins, a Texas District Court judge ruled that “Bitcoin is a currency or form of money,” and thus the defendant’s claim that Bitcoin was not money and therefore his offerings were not securities within the jurisdiction of the SEC was baseless.[13] Also, the Financial Crimes Enforcement Network (“FinCEN”), the anti-money laundering enforcement agency of the U.S. Treasury has stated that both bitcoin exchanges as well as miners that exchange their newly-mined bitcoins for money are money transmitters subject to state licensing requirements—though how and why this would be enforced against the latter group is unclear to say the least.[14]

Meanwhile, up north, the Canada Revenue Agency has indicated that the rules which apply to bartering apply to trades involving bitcoin, which means that purchases of goods, services, or other currencies with bitcoins will result in taxable capital gains (or losses) if the value of the bitcoins (in Canadian dollars) has increased or decreased since they were acquired.[15] And, in contrast with the U.S., Canada’s Financial Transactions and Reports Analysis Centre (“FINTRAC”; agency equivalent to FinCEN) has informed bitcoin exchanges that they are not subject to regulation as money services businesses under the applicable anti-money laundering laws (for the time being, at least).[16]

Other concerns regarding the technology

Aside from uncertain, sometimes conflicting legal classification and treatment, other concerns have been raised regarding the use of bitcoins in illegal drug and weapons trade, and for money laundering by criminals and terrorists. However, these arguments flounder somewhat when faced with the simple fact that as a public ledger, it is technically easier to trace dirty bitcoins than it is to trace dirty cash. That said, bitcoin mixing (read: laundering) services have sprung up for bitcoins too. It is worth noting here that the Silk Road, one of the largest marketplaces for all things illegal, operating on the near-anonymous Tor network and using bitcoin as its primary trade currency, was recently shut down by the U.S. government—its alleged operator arrested on drug charges and conspiracy to murder.[17]

Others point to the fact that it is possible to use the Bitcoin protocol to encode other kinds of content into the blockchain— including illegal content, like links to child pornography—immortalizing it there in the computers of every user of the network (whether they have the means or the desire to decode the content or not). Of course, this is not a new argument—it has been leveled against the Internet itself. And like the Internet, the Bitcoin protocol cannot be held responsible for the moral acts of its users, good or bad. Law enforcement agencies will simply adapt, as they already are doing.

The above is by no means an exhaustive analysis of the legal status of Bitcoin or of any particular uses for the technology, it is just meant to give you an idea. Generally speaking, owning and using bitcoins seems to be legal, but doing things with Bitcoin that would be illegal to do with money or with the Internet, remain illegal. It’s as simple as that.

Cryonics-specific uses for bitcoins

(1) Asset preservation
It has been suggested that since bitcoins appear to store value (in a somewhat erratic, volatile fashion, if that isn’t a contradiction in terms), they could provide an alternate means to those currently employed by cryonicists seeking to maintain possession of their accumulated wealth during their period of cryopreservation (namely, asset preservation trusts). And in fact, since Bitcoin is designed to be a deflationary currency[18], assuming that it survives and is adopted widely, wealth stored as bitcoins will likely be worth much more in the future than it is now. This might be attractive to cryonicists for whom volatility on shorter timescales is not terribly concerning.

So how could cryonicists accomplish this? The all-important piece of information that gives a particular person the ability to send bitcoins stored at a particular address is the private key for that address. Trouble is, no matter how that private key is stored, whether digitally on a computer owned by the cryonicist, or on a secure cloud server controlled by the cryonicist under some agreement entered into with the cloud server provider, or even written down on a simple piece of paper (the so-called “paper wallet”), none of these records of the private key will escape the effects of estate law if they remain the cryonicist’s property upon legal death. Thus the information required to transmit the cryonicist’s bitcoins would end up in the hands of beneficiaries—beneficiaries who today might not even know what to do with them! This could result in either the loss of the bitcoins to the cryonicist, or the permanent loss of the bitcoins altogether, since if the private key is outright lost, the bitcoins stored at that address are no longer accessible.

The only way to avoid this would be to use essentially the same mechanism currently used for cryonics asset preservation, i.e. giving the medium with the private key on it to a trustee to hold for the cryonicist until they are successfully resuscitated. But then we haven’t actually come up with a new solution to the problem we set out to solve, because this trust will have to be drafted in more or less the same way as other cryonics asset preservation trusts, such as the Alcor Model Trust, with an interim beneficiary standing in for the cryonicist while they are not a legal person. And there is nothing wrong with that in principle, but since bitcoins are informational in nature, there might be another way of preserving them for later use, without using trust law mechanics—perhaps as a way of hedging oneself against the possible failure of the trust for one reason or another.

This alternate method relies on the fact that, as information, bitcoin private keys can be memorized. However, private keys are even longer than bitcoin addresses themselves, and thus not the easiest things to memorize. So, some clever people have devised a way of generating private keys by hashing series of words that are much easier for the average human being to remember, like “correct horse battery staple.”[19] These approaches to securing bitcoins are referred to as brain wallets. Fair warning, though: short, simple combinations of ordinary words are vulnerable to “dictionary attacks.” For similar reasons, a beloved section of poetry, in unaltered form, is not a wise choice of phrase to generate a private key either. As with ordinary passwords, addition of numbers, special characters, and variations of case are advisable.

In their brain wallet, the cryonicist stores some of their wealth in bitcoins using a secret passphrase known only to them. Upon resuscitation, they generate the private key from the passphrase, and they have everything they need to transact with the bitcoins as they desire. Conceivably, brain wallets could even be used to incentivize resuscitation, by telling your cryonics provider about the bitcoins and promising them some portion of them upon your return.[20] Of course, that idea leads to a potential pitfall of storing the key to your wealth in your brain, as it makes your brain potentially quite valuable—that is, valuable to people other than yourself and those that care about you for you. If it became common knowledge that cryonicists were using this as a strategy for asset preservation, mightn’t this make cryonics facilities attractive to the future’s version of tomb-raiders, lusting after the riches locked away in cryopreserved brains? The best case scenario there would be that the technology exists to somehow “read” the private key from a brain while still cryopreserved. A worse scenario would be that the cryonicist, having been abducted from their long-term care provider, is later resuscitated under rather different circumstances than they intended—as hostages of their resuscitators, and only of continued value to them until they give up the goods, as it were. I will say however that both those scenarios sound more like premises for science fiction stories than likely futures.

Another, less fantastical problem with using brain wallets for asset preservation is the possibility that part of the cryonicist’s brain that is involved in storing the private key—or more likely the passphrase used to generate it—is damaged during cryopreservation in a way that is not reparable. However, without delving too far into the subject, I wonder if there are mnemonic strategies that would reduce the likelihood of this undesirable outcome. Even something as simple as ritualized, periodic recall of the passphrase to continually reactivate the memory and strengthen it might result in a memory that has sufficient physical redundancy in the brain to resist some amount of damage.

Lastly, there is always the chance that during the patient’s cryopreservation, Bitcoin fails for some reason, either because some major flaw in the protocol is discovered and exploited, or a successor technology comes along, and the value and wealth currently stored in Bitcoin drains out of it into the successor. That said, Bitcoin still has a strong first mover advantage, and as a protocol, any deficiencies identified through experimentation with the numerous “altcoins” that exist can simply be implemented into Bitcoin, which has considerable network effect favouring its competitive survival. However, due to this and the aforementioned risks, it would be seriously inadvisable to make storing wealth in Bitcoin brain wallets one’s only asset preservation strategy.

(2) Collection of donations, and payments for services
Case in point: I created a Bitcoin address for the Institute for Evidence Based Cryonics just before the symposium on Resuscitation of Cryonics Patients in May, and merely because we accepted bitcoins, someone in the audience, with whom we had no prior relationship, made a donation. And all he had to do was scan the QR code of IEBC’s public address that was on my phone.

In addition to soliciting donations this way, cryonics service providers could also accept member dues and lump-sum prepayments via Bitcoin. Compared with the transaction fees charged by credit card companies and PayPal, which are generally a percentage of the value of the transaction itself, the default suggested transaction fee is only 0.0001, or at today’s exchange rate a little over one cent[21]. And historically, as the price of bitcoins has increased, the default transaction fee has been reduced, since transaction fees only need to be a small component of the miners’ incentive while the block reward is still quite high. Anyway, this is much cheaper than the competition, and also much faster, as Bitcoin transactions “settle” securely in about an hour, and realistically can be relied on even sooner when dealing with relatively small transactions, as the risk of a doublespend attempt is very low there due to the cost of the computing power required to successfully pull it off.

However, for organizations worried about the extra level of accounting complexity created by accepting payments in a currency with a value that fluctuates relative to their home currency, there is an alternative. Numerous payment companies are springing up in the Bitcoin service layer that aim to make accepting bitcoins easier on companies, Coinbase being a wellfunded frontrunner that gives merchants the option to have incoming bitcoin transactions converted immediately into USD at the current exchange rate, plus a 1% service fee (which is still significantly cheaper than credit cards and PayPal).[22]

Other cryonics-relevant uses

The surface has only just been scratched with respect to what the Bitcoin protocol is capable of. Blockchain technology is an incredibly powerful tool, that has already been adapted for use as a cryptographically secure, peer-to-peer messaging system[23], as well as a decentralized domain name system[24]. Automated contracts with built-in dispute resolution mechanisms, aka “smart contracts” are in the works, and “smart wills” should be possible as well, though cryonicists will probably be more interested in ways of maintaining personal control over their wealth, as described above.


Hopefully, this article has served as an understandable yet accurate introduction to Bitcoin, from both a technical and a legal perspective, with special attention to its historical connections to the cryonics community, and its possible future uses for cryonics.

Learn more: http://bitcoin.org/en/

Already a Bitcoin user? Consider making a donation to the Lifespan Society of British Columbia using the address in the article above. The Institute for Evidence Based Cryonics (www.evidencebasedcryonics.org) also accepts bitcoins, at 1Mouv 8BcRUmqVHRRNPaQPmFkzskMqoiSDk.


[1] For those who might be irritated by my switching back and forth between “Bitcoin” and “bitcoin,” the capitalized former is usually reserved for referring to the protocol as a whole, whereas the non-capitalized latter refers to units of the currency itself.

[2] Transaction fees are not required to broadcast a transaction to the network, but miners can opt only to include transactions with fees in any blocks they solve, so including a fee will result in faster confirmation by the network. The current default fee (no matter how large the transaction) is Ƀ0.0001—approximately one cent.

[3] http://www.mail-archive.com/cryptography@metzdowd.com/msg09959.html

[4] http://konradsgraf.com/blog1/2013/4/6/hyper-monetization-questioning-the-bitcoin-bubble-bubble.html

[5] That said, the world’s first operational Bitcoin ATM will be installed in Vancouver this month, with four others in Toronto, Montreal, Calgary and Ottawa: http://www.ibtimes.com/worlds-first-bitcoin-atm-coming-canada-robocoin-kiosk-hits-vancouveroctober-1404346

[6] http://blogs.wsj.com/digits/2013/04/30/could-paypal-be-on-horizon-for-bitcoin/

[7] http://bitcoinmagazine.com/6021/bitcoin-is-not-quantum-safe-and-how-we-can-fix/

[8] http://lesswrong.com/lw/1ab/dying_outside/

[9] https://bitcointalk.org/index.php?topic=155054.0

[10] https://en.bitcoin.it/wiki/Satoshi_Nakamoto

[11] Gavin is paid a salary by the Bitcoin Foundation, a non-profit working to standardize, protect, and promote the Bitcoin protocol: https://bitcoinfoundation.org/

[12] https://bitslog.wordpress.com/2013/04/17/the-well-deserved-fortune-of-satoshi-nakamoto/

[13]. Securities and Exchange Commission v. Shavers, No. 4: 13- CV-416 (E.D. Tex. Aug. 6, 2013).

[14] “Application of FinCEN’s Regulations to Persons Administering, Exchanging, or Using Virtual Currencies,” FIN-2013-G001. Available at http://fincen.gov/statutes_ regs/guidance/html/FIN-2013-G001.html

[15] http://www.cbc.ca/news/business/revenue-canada-saysbitcoins-aren-t-tax-exempt-1.1395075

[16] http://www.theregister.co.uk/2013/05/20/canada_ welcomes_bitcoin_traders_fintrac_letter/

[17] http://www.reuters.com/article/2013/10/02/us-crimesilkroad-raid-idUSBRE9910TR20131002

[18] The mining reward will halve approximately every 4 years, resulting in the total number of bitcoins never exceeding 21 million—the design rationale being that over time the number of transactions on the network will increase to the point where competition for rapid inclusion in blocks (and thus, faster confirmation of the transactions) will result in sufficient transaction fees to incentivize miners’ continued support of the network without the block reward. So while technically the supply of bitcoins is increasing, it is expected to eventually behave like a deflationary currency, relative to traditional currencies. Since 25 new bitcoins are created approximately every 10 minutes, at present over $3,000 USD worth of “new money” in traditional currencies needs to enter the bitcoin market just for the price of bitcoins to remain flat; thus, the rising price of Bitcoin, while appearing like deflation, is actually merely a function of supply versus demand (and also exchange bottlenecks).

[19] This example is rather famous in the Bitcoin community, as it was used in the popular online comic strip, xkcd: http:// xkcd.com/936/

[20] I must credit this idea to Danila Medvedev, who floated it on Cryonet Asset Preservation mailing list in August: http://groups.yahoo.com/neo/groups/New_Cryonet/ conversations/messages/5448 (requires joining the mailing list to view).

[21] Remembering that the transaction fee is only required if you want your transaction confirmed relatively quickly. If there is no rush on the recipient’s end, one can send bitcoins without any fee at all, though it may take some time to be included in blocks, as transaction fees are part of the miners’ incentive, though for now a relatively small incentive compared with the 25 bitcoin block reward… but this will change over time.

[22] https://coinbase.com/merchants

[23] https://bitmessage.org/

[24] http://dot-bit.org/

11. October 2016 · Comments Off on Getting the Word Out · Categories: Cryonics, Society

For this month’s column, I have been asked to write about how to start a viable and well-attended local life extension group. I suppose the reason I am qualified to write on this subject is because I have been working on precisely that for the past three years, ever since I first learned about life extension and cryonics. However, I certainly didn’t know how to do such a thing when I started out, so as much as I would love to provide a step-by-step recipe for the successes we have had in Vancouver, so much has been done by trial and error that the best I can do is communicate some of the things I believe have been instrumental in what we have managed to accomplish so far with Lifespan Society of British Columbia. So, without further ado:

Indulge your obsession… at least at first. If you are still in that highly energetic, early phase in your interest for life extension, just go with it! Read everything you can about the topics that interest you, including what the critics and detractors have to say, so that you can credibly educate others on the subject. Learn the answers to the typical objections—but be gentle when you repeat them, you don’t want to scare people off by treating them like they’re stupid for not being so sublimely rational as you are. Aim to become the person others are referred to in order to learn more about cryonics/ SENS/supplements/your topic of choice.

Make yourself available. It’s easy— just offer to take people out for coffee! Even once you have a group going, many people will find the idea of going to a group composed entirely of unknown people somewhat intimidating (I know I do!). If people reach out to you about life extension or cryonics, tell them about your group but also offer to meet them for coffee/beer/whatever. Many of Lifespan’s current members are people I had a one-onone conversation with about life extension and cryonics over the last three years.

Listen. One major piece of advice I have for anyone interested in life extension advocacy is to really listen to the people you talk to about these subjects, and learn to understand why they are interested. Don’t make the mistake of assuming that their reasoning, their philosophy, their politics are either the same as yours, or else wrong. Of course many of us tend to think that way privately, but if you allow yourself to be permeable to other viewpoints (even as you intentionally challenge mainstream beliefs by holding your divergent beliefs publicly), you could be surprised by others’ capacity to grab onto new ways of thinking. Arguing with the intent to have someone change their mind publicly is almost always a losing battle, and is more about the arguer’s ego being around to see its own triumph of reason than it is about the desired effect of changing the way people think. Ask questions and answer questions, but do so softly and humbly.

Reach out and meet up. One of the earliest things I did after becoming interested in cryonics was make contact with someone through the Cryonics Society of Canada mailing list, who I knew lived reasonably close to me, and offer to host him and any other likewise interested people he knew from the area to meet me in the boardroom of my condominium to discuss local developments. The majority of us are still involved with what became Lifespan Society, and are still meeting regularly three years later. I really think in-person meetings are key, even if the group starts small and it seems like the same discussion could be done over email. If you don’t know anyone in your area yet, check out the regional sections of larger forums, like longecity.org, or by posting an invitation to meet on a mailing list. There is also a list of regional cryonics groups at the back of this magazine, which is a good place to start.

Don’t just talk. Now, I would say that this movement is still in a sufficiently early stage that simply meeting live and talking about it is progress, but even the most passionate supporters can get bored sitting around a table discussing the same points over and over. So the next step is to build some kind of activity around the conversation (the true content) to adhere to. As an example, at Lifespan we host movie nights where we screen documentaries, videos of conference presentations, or even just thematically-related films, and then discuss them afterwards. These have proven very popular. We also had a night out at the theater recently, when the opportunity arose to see a play that touched on themes of radical life extension, transhumanism and the Singularity. We also hold nature walks and hikes, which, as a life extension group, puts our money where our mouth is by integrating some physical activity into our meetings.

Start a local mailing list, or online forum. Larger mailing lists and social networks are fantastic places to learn and to meet people, but once you reach a critical mass in your local meetings, it will become unwieldy to coordinate these via direct emails (people getting dropped from the cc’s, etc.). Get yourself a space where you can talk about local issues with local people without worrying about spamming outsiders. Some people who may not be as comfortable discussing these topics on large public fora may open up on a smaller, locally-oriented list as well. Google and Yahoo groups are both good for this, though if you’re fairly privacy-oriented, you may want to look for alternatives.

Set goals. The group’s keeners will want to be able to make progress on particular ideas, and while public meet-ups are very valuable for growing your network, they are not the best venue for objective-driven meetings with agenda, etc., because every newcomer ends up needing to be brought up to speed before they can contribute meaningfully. Sometimes also the topic of discussion may be of a sensitive nature, or there might be people who would like to attend, but are a reluctant of being publicly affiliated with “controversial” ideas, and would rather there was someone playing gatekeeper to the more serious meetings. Float a date, book a room (or if you have a big enough space yourself, volunteer your place), and circulate agenda items on your local mailing group.

Infiltrate your local university. Obviously, in this case it helps if you happen to be a university student, as I was when I first became aware of life extension. But if you aren’t a student, nor do you know one, you could strategically host a public meet-up at a venue on campus and advertise there. Students are often looking for volunteer experience for their resumes, and many universities have a club ‘incorporation’ system which grants student organizations access to club grants, and use of university venues at reduced rates or even free. Undergraduate students are comparatively easy to get excited about life extension, probably because they haven’t been in the “system” long enough to become doctrinally entrenched and hyper-skeptical. If anything, the revolution in medicine that Aubrey de Grey’s and others’ visions of life extension represent makes science feel exciting again, giving students a taste of what it might have felt like to be a budding scientist during the Space Race.

Infiltrate other groups. Find related groups, such as humanists, transhumanists, or rationalists, and start attending their meetings. There are very good arguments for separating life extension advocacy from all the “-isms” it has historically been attached to, but that said, groups devoted to these ideologies are still good places to meet people who are more likely than the average person on the street to get excited about life extension. The cross-pollination can work both ways, exposing your existing members to a forum where they can discuss things they may be interested to talk about, but that is outside the scope of your life extension group.

If you are under 30, and interested in cryonics, I would highly recommend getting funding arrangements in place, for all the usual reasons of course, but also to attend the Teens and Twenties cryonics gathering in Florida. Having attended in 2010, I can say with certainty that you are unlikely to meet a more interesting group of young persons. The gathering draws young scientists and researchers, philosophers, actors, musicians, and cryonics professionals, and there are scholarships available for cryonicists under 30 to pay full or partial costs of travel and attendance, generously provided by the Life Extension Foundation.

Find something to rally around. One of the most challenging aspects of life extension activism is that it is such a broad concept in the first place (even before considering the differences of opinion as to what exactly counts as life extension within the community itself!). Here in B.C., our need to better clarify what exactly the notorious anti-cryonics law means for cryonicists in the province, and our desire for the government to justify its existence have, since the inception of our local community, served as rallying points around which the other parts have coalesced. But a good rallying point doesn’t have to be reaction against government intervention. Perhaps there is someone in your area in a situation like Kim Suozzi, or Aaron Winborn, who is interested in cryonics, but due to circumstances (likely immediate need) cannot afford it. Whatever your objective, if you can convince the larger community of its value, you may find that they have a sufficient stake in what you are doing to provide much-needed financial support.

Get Help! At some point, it will simply not be possible for you to do everything yourself. If you are in school, or working, you will need help keeping meetings and events happening, and growing. Start developing these kinds of relationships early on, so you never get to the point of burning out—or even if you do, there are others able to take the reins for a while. And then, once you’re ready, incorporate! Not only is this a sign that you have officially ‘arrived’ as an organization, but it’s also a good idea if your activities are starting to get more attendance, and especially if they’re getting more… adventurous (from a liability perspective). It’s also difficult to attract significant funding without a corporate identity and bank account. Take advantage of free or low-cost local resources available to fledgling nonprofits. The local university chapter of Pro Bono Students of Canada was immensely helpful to Lifespan early on, connecting us with lawyer supervision for drafting our incorporating documents, as well as doing some legal research for us on the B.C. anticryonics law.

Conclusion. In writing this, I came to realize how many of the suggestions I have could be lumped under the heading of “networking.” I don’t consider myself to be a very effective networker—and if someone asked me for my feelings on networking in the abstract, I would probably tell them I positively abhor it… and that is usually the truth! But in life extension I found a topic that captivated me so completely that I did quite a lot of networking over a relatively short period of time without really realizing it. So I guess it all goes back to the top item in the list: indulge your obsession (within reason). Fuel your passion, and the rest will come naturally.

First published as a regular column called In Perpetuity in Cryonics Magazine, September 2013.

03. October 2016 · Comments Off on Bootstrap Personhood · Categories: Cryonics, Society

(Or, Corporations are People, Too…)

In my last article, I looked at some historical and contemporary examples of legal activism aimed at expanding legal personhood to beings not already included in that category. As much as it was a fairly superficial survey, some trends could still be ascertained, firstly (and not so surprisingly) that courts tend to preserve the status quo when faced with these hard questions, and secondly, that even when the decision is made to admit or recognize new persons, courts do not provide much in the way of guidance with regards to what qualities the beings possess that were necessary and sufficient to their recognition as persons. The groups of beings which have seen some successes suing for increased recognition as persons (slaves, women) have been ones capable of speaking for themselves—even if lawyers were hired to make the actual legal arguments. Advocates for unborn human fetuses and nonhuman animals have received answers from the courts more or less along the lines of “these beings asserted to be persons have never before been recognized as persons, therefore they are not persons,” leaving any potential for change to the political realm (probably at the constitutional level). Some intermediate recognition or protection was carved out for late-term fetuses in Roe v Wade, and this is probably the most relevant case for future cryonics personhood activism because the court there gave some explanation for this protection as being founded upon the “potentiality of life” of the unborn fetus. So, if a cryonics personhood case were to rely on that particular precedent to argue that cryonics patients should receive some higher level of protection against unwanted interferences, I suspect the kind of proof required to substantiate their “potential” to live would be the resuscitation of a non-human animal from a cryopreserved state. Even then, the intermediate category carved out for cryonics patients may only extend so far as those humans who are preserved under the same or very similar circumstances to the experiment model, which may very well not include anyone preserved today.

So, the prospects for suing for cryonics patient personhood, or partial personhood are, for the moment, poor. Political activism might have a better shot, considering that “personhood amendments” extending personhood to fetuses have at least managed to make it through state legislatures in the U.S., but it is hard to imagine an interest group as small as today’s cryonics movement managing to get that kind of traction—we simply don’t have
enough votes for politicians to worry about winning. On the other hand, we have the simple truth that cryonics patients could really benefit from personhood, even if for no other reason than to hold assets that will otherwise be transmitted to next-of-kin or beneficiaries named in the patient’s will.

But haven’t we already solved that problem? Haven’t cryonics asset preservation trusts (or personal revival trusts, or reanimation trusts, or whatever name is currently in vogue), been developed for precisely this reason? Yes, they have, and with the abolishment of the rule against perpetuities in numerous jurisdictions these are a reasonably effective workaround to cryonics patients’ current lack of personhood. In a way, cryonics patients are not unlike some of the earliest users of trusts in English law— the Crusaders venturing off to faraway lands, whose future status as alive or dead was sufficiently uncertain that they felt it necessary to hand over their assets to trusted third parties to hold for the benefit of their families (and themselves, if they made it back alive), with some assurance that the law would recognize those beneficial entitlements. But ultimately, the law only recognizes persons as possible beneficiaries (well, with a few exceptions that cryonics patients don’t really fit into), and for these trusts to work as intended our patients do still need to resume personhood at some point—upon resuscitation, if not earlier.

What if, for some patients at least, revival doesn’t proceed by “resuscitation” in the mechanical sense, or even “repair,” but through some kind of uploading scenario which results in a being rather different in form from the original? If such beings are not recognized as legal persons, or the same persons as were cryopreserved, then even if the trustees do what they are supposed to do and recognize these beings as the beneficiaries, they will not have legal capacity to hold title to the property, and this could significantly limit their ability to actually use and benefit from those assets. So are we assuming too much about the legal status of such future beings when we establish trusts that, for the moment, can only benefit “persons”? Perhaps not – arguably it might not even be ethical to revive cryonics patients into any format that was not on equal legal footing with what we call “persons” today. But on the other hand, maybe we are unnecessarily committing ourselves to fitting into particular socially constructed boxes.

I am interested in exploring whether we could bootstrap personhood for our patients using the existing legal personhood of corporations. The current “standard” setup for cryonics asset preservation trusts has the trustee(s) holding legal title to assets for some interim beneficiary that has the personhood status required of it by trust law, with the resuscitated cryonics patient written into the trust as a contingent beneficiary and intended ultimate recipient of the trust capital. The interim beneficiary could in theory be anyone, but the traditional wisdom is that the patient’s cryonics organization is the safest choice, as being far less likely to seek to terminate the trust (which is something trust law allows beneficiaries to do under some circumstances).

In my model of cryonics patient corporate personhood, however, the patient incorporates a unique, incorporated “avatar” of themselves (named after them even) while still alive, to be the interim beneficiary of their asset preservation trust while they are not a person.

Now hold on a moment, you should be asking yourself—if the patient incorporates a corporate avatar of themselves, they own that corporation by holding all of its shares, and when they die, those shares will pass to their next of kin or the residual beneficiaries of their will, who would then “own” the beneficiary of their asset preservation trust. So how would that solve anything?

Well, these cryonics patient corporate persons need to be propped up somehow, and to that end I am imagining a cryonics patient personhood organization, a nonprofit organization formed expressly for the purpose of anchoring cryonics patients’ corporate identities during their cryopreservation. After incorporating their patient corporations, the cryonicists transfer their shares, and thus ownership of their legal avatars to the personhood organization. The personhood organization would be independent of all the cryonics service providers, patient care trusts, asset preservation trustees and institutions. While the patient is neither recognized as a legal person nor able to speak for themselves, the personhood organization’s only function is to perpetuate the existence of the patient corporations. Then, if the time comes that the patient is able to speak for themselves, but lacks personhood (i.e. the scenario I imagined above where “uploaded” beings are not recognized as persons, or the same kind of persons, as “natural” human persons), then the unalterable by-laws of the personhood organization direct it to operate the patient corporation on the revived patient’s instructions. And, of course, if and when the patient’s own natural personhood is recognized, the shares of the patient corporation will be transferred back to them—though by this time, its utility will have waned.

The personhood organization can serve as the anchor point for any number of patient corporations, and it would also fall within the mandate of such an organization to advocate concurrently fo recognition of “real” personhood for the patients, both before their resuscitation/ revival, and after if necessary. The critically important feature of this model for cryonics patient personhood is that not only is the cryonicist-composed membership and directing mind of the personhood organization bound by unalterable provisions of the organization’s constating documents to perpetuate and operate the patient corporations according to the patients’ wishes, but also that they have a very strong incentive to do so because they will all be relying on the same mechanism to prop up their own personhood down the road.


There is one other thing that interests me about using corporate personhood in this way. I have written before about whether cryonics patients are “property” in a truer, legal sense than we usually think of them. If this is so, then title to the patient “specimen” could be transferred to that patient’s corporate personality, subject, of course, to all the same conditions regarding the specimen’s use that accompanied the original anatomical gift to the patient’s cryonics service provider—namely that the specimen remain in the custody and care of the cryonics service provider. For some reason I find the idea of putting the “brain” inside the person like this to be very elegant, but I am not at all sure it poses any real advantage. One possible reason to do this would be that it would keep the specimens out of the cryonics organization’s asset column if at some point down the road a monetary value could be assigned to them that could become vulnerable to the threat of litigation. This, of course, is the reason why the funds earmarked by Alcor for indefinite patient care have been transferred into the Alcor Patient Care Trust; would it not make just as much sense to take similar precautions with the patients’ most precious assets—themselves?

When I presented this idea for cryonics patient corporate personhood at the Institute for Evidence-Based Cryonics symposium in May, I was asked whether it wouldn’t be simpler to just draft patient control directly into the asset preservation trusts instead of adding further complexity by inserting a patient corporation and personhood organization into the mix. I had to admit it is possible that cryonics patient corporate personhood is a semantic improvement more than a functional one. However, I do think it is important to remember that a trust is not a person, but rather a relationship between persons (i.e. trustee and beneficiary), and for so long as the cryonics patient is not a person, the trust is pointing at some other person as its beneficiary instead, that the cryonics patient is simply trusting without any legal recourse. My solution doesn’t avoid the “trust” issue entirely, but adds an additional check/balance, and gives the patient indirect control not just of the funds, but of a “person” on the other side that can hold title to property, enter contracts, and sue (…and be sued). I think it could be argued also that cryonics patient corporate personhood makes asset preservation trusts redundant—that is to say, why would you have someone hold your money for you if “you” are holding it yourself (while someone else is propping you up)? But we mustn’t forget to divide labor where appropriate. The mandate of the cryonics patient personhood organization would not be focused on wealth management, so there is still good reason to place assets in the hands of those with the expertise to make their value rise with the times. On the flip side, something cryonics patient corporations could do that asset preservation trusts (and the institutions which typically act as trustees for such trusts) are not well-positioned to do, is hold non-monetary personal property (i.e. keepsakes which are more valuable to the cryonicist in non-liquidated form).

Cryonics patient corporate personhood is also subject to one major risk that on its own justifies keeping the trust portion of the larger structure intact. Corporate personhood, or perhaps more correctly, the rights and protections currently enjoyed by corporate persons, have become the object of heightened public suspicion in recent years. It is not impossible that these rights could be rolled back, though I think a complete abolishment of the entire concept would only occur if there was a complete political revolution. In any case, as I’ve pointed out, trusts are useful to cryonics patients for some purposes, and patient corporations may be useful for others; and having an organization specifically devoted to advocating for and upholding cryonics patient personhood, in its natural and bootstrap forms, respectively, would benefit the cryonics movement overall.

First published as a regular column called In Perpetuity in Cryonics Magazine, August 2013.

01. October 2016 · Comments Off on We Shall Overcome · Categories: Cryonics, Society

Legal Approaches Toward Cryonics Patient Personhood

The current medico-legal definition of death creates numerous obstacles to the successful resuscitation and reintegration of cryonics patients: our ability to be cryopreserved under optimal conditions is restricted in the first place, and once cryopreserved, we are no longer legal persons, so we are only weakly protected from undesired interferences and we cannot continue holding property that we would like to have post-resuscitation. That said, the cryonics community is not the first to desire enhanced legal status and protection for its members. In this article, I will survey some instances of legal activism in historical and contemporary personhood movements, evaluating their success and applicability to the cryonics movement.

Why personhood?

Personhood is important to cryonics because it is important to us right now, though we probably take the status for granted. Though it is not necessarily true to say all persons enjoy equal protection under the law, by default the level of protection (that is to say, the rules on others not to interfere) of persons is much higher. Furthermore, personhood is what gives us access to the legal system, and with it the ability to enter enforceable contracts with other people, own property and exclude others from the use of it. For cryonics asset preservation, this last feature is probably the most important, though protection of the patient from undesired physical interferences is still of paramount importance to the overall endeavor. However, while we take these abilities for granted as being features of our present personhood, not all persons have always enjoyed these, and not all beings who are currently persons were always so. There are also beings that are not persons that some argue should be, and some non-beings that are persons, that some argue should not be (corporations, and other “legal” persons). Generally speaking, there has been an expansion of personhood to include more beings in recent centuries, and also an increase in the protections afforded those beings (at least on paper). Some of these advancements have come about as a result of legal activism, i.e. members of the excluded or under-protected groups (or their advocates) petitioning courts either to recognize novel classes within existing definitions, or make principled alterations to historical criteria for membership. Other gains have been made through political activism, but this article will focus primarily on the role of legal activism in the expansion or attempted expansion of personhood to particular groups (slaves, women, fetuses and animals) and enhancements of protections afforded certain subgroups. The second part of this article will consider whether anything can be learned from these historical and contemporary movements, and look at opportunities for legal activism in cryonics. A follow-up article will look at a novel way that corporate (artificial) personhood could enhance the protection of cryonics patients and/or their assets.


In 1772, the English case of Somersett v Stewart set an important precedent in the global abolition movement. Three years prior to the case, a customs officer named Charles Stewart had brought a slave purchased in America back to England with him. The slave, James Somersett, escaped in 1771, but was recaptured and imprisoned by Stewart, whereupon three people claiming to be Somersett’s godparents by baptism in England applied for his release on the grounds that there was no lawful reason for his imprisonment. However, far from being based on humanitarian principles, the arguments put forward on Somersett’s behalf simply relied on the absence of any statutory or common law in England recognizing slavery (serfdom having been abolished over 600 years prior). Since the common law of contract could not bind a person absent their consent, Somersett’s imprisonment was unlawful, it was argued. Lord Mansfield of the Court of King’s Bench agreed with this argument, proclaiming that “the state of slavery is of such a nature, that it is incapable of now being introduced by Courts of Justice upon mere reasoning or inferences from any principles, natural or political; it must take its rise from positive law.” Lord Mansfield held that the legal status of an alleged slave depended not on the law of the state where he or she originated, but on the law of the jurisdiction of the legal action, in this case England. Thus, while the institution of slavery was alive and well in America, a slave was free to withdraw from the service of his former master upon arrival in England.

The result is pleasing enough, but unfortunately for our purposes the decision avoids the hard moral, philosophical, and most of all legal question of what makes a person; rather, it presumes that in the absence of a law declaring him to be anything else, Somersett was a person and not property. The arguments based on contract law relied on this—after all, property cannot enter into contracts in the first place. No reasoning was put forward by the plaintiffs, nor considered by the court, as to what qualities distinguish a person from property, either in the abstract or in the specific context of an American slave of African descent.

Not long after Somersett’s case, the United States did enact positive law recognizing slavery, in Article Four of the United States Constitution: “No person held to service or labour in one state, under the laws thereof, escaping into another, shall, in consequence of any law or regulation therein, be discharged from such service or labour, but shall be delivered up on claim of the party to whom such service or labour may be due.” This law was essentially an answer to the decision in Somersett’s case (which, while not binding on the States, was still an open question there), as between the slave states and the free states. The U.S. abolition movement did not reach its boiling point until 80 years later, with the case of Dred Scott v Sandford, (1857). Mr. Scott sued for his freedom on grounds that he and his master had resided for a time in a state where slavery had been banned, but the Supreme Court of the United States held that as a person of African ancestry, Scott was not a citizen of the United States and had no right to sue in federal court (notwithstanding the fact that free blacks in some states did enjoy the rights of citizens of those states). According to Chief Justice Taney, the drafters of the U.S. Constitution viewed all blacks as “beings of an inferior order, and altogether unfit to associate with the white race, either in social or political relations, and so far inferior that they had no rights which white man was bound to respect.” Unsurprisingly, the Chief Justice is not taking personal responsibility for the morality of this position, merely declaring it to be the intent behind the law he is bound to apply.

Now technically, the jurisdictional issue in Dred Scott turned on the question of citizenship, not personhood, as this was the language of the relevant section; however, in obiter dicta, Chief Justice Taney also held that the Fifth Amendment prevented any law from depriving a slaveholder of his property, such as his slaves, upon the incidence of migration into free territory. It is implicit to this holding that slaves were no more persons than they were citizens.

The essential reasoning of Dred Scott was: (1) the being talking to us needs to be a citizen for us to listen; (2) a citizen is what the people who chose that word when drafting the statute would have meant by citizen; (3) historical analysis reveals the drafters would not have considered you a citizen because you are a Negro descended from a slave; therefore (4) you are not a citizen. The English decision, on the other hand, simply presumed Somersett to be a person in the absence of any positive law making another status possible, without explaining why (this may not be that surprising, however, since there were, at the time, free blacks in England). Both courts let slip the opportunity to expound upon the qualities of the being before them that are, or would be, necessary and sufficient to a finding of personhood, even though such a finding was a necessary prerequisite to the disposition of each case.

Ultimately, it took a constitutional amendment subsequent to the American Civil War to elevate the status of American slaves to persons and citizens. However, in stating that “[a]ll persons born or naturalized in the United States, and subject to the jurisdiction thereof, are citizens of the United States and of the State wherein they reside,” the Fourteenth Amendment does not actually accord slaves freed under the Thirteenth Amendment the status of personhood—like Lord Mansfield in Somersett v Stewart, their personhood is simply presumed.


Of course, neither personhood nor citizenship guarantee equal protections and participation in public life. Women, for instance, were recognized as citizens of the United States falling within the meaning of the 14th Amendment in Minor v Happersett (1875), which as we’ll recall requires an implicit finding of personhood, but the decision in that case held the right to vote was not one of the “privileges or immunities of citizens of the United States” when the Fourteenth Amendment was adopted (1868). Indeed, at the time the 14th Amendment was adopted, in many places women actually lost legal rights under local marriage laws—among those the capacity to own property. And once more, a constitutional amendment—a political achievement as opposed to a legal one—was required to enhance the status of women to equal footing with men on the issue of voting (19th Amendment, 1920).

However, the question of women’s personhood was directly considered in the Canadian case of Edwards v Canada (AG) (1929), aka the “Persons case.” At issue there was whether the phrase “qualified Persons” in Section 24 of the British North America Act (the precursor title of Canada’s Constitution), in reference to senate appointments, included women. The Supreme Court of Canada found that based on (i) the usage of the word “He” in the nearby section detailing the necessary qualifications, (ii) the historical intentions which could be imputed to the drafters of the of the Act, and (iii) the common law incapacity of women to exercise public functions at the time, women were excluded from Section 24.

Luckily, the Supreme Court of Canada was not the final say in the matter at that time, and the case was appealed to the Judicial Committee of the Privy Council in England. Overturning the decision, Viscount Sankey ruled that “[t]he British North America Act planted in Canada living tree capable of growth and expansion within its natural limits… Their Lordships to do not conceive it to be the duty of this Board… to cut down the provisions of the Act by a narrow and technical construction, but rather to give it a large and liberal interpretation….” But once again, the Privy Council’s decision on the definitional matter at issue doesn’t actually consider whether women are in fact persons, and why, but rather whether the term “person” in that context impliedly excludes “female persons.” Instead of being about what makes a person, the debate turns on what kinds of persons the drafters meant by “persons.” It assumes that women can be persons, either if those responsible for drafting the document giving persons certain capacities meant to include female persons, or, in the Privy Council’s opinion, by default unless exclusion is explicit. This is still a textualist interpretation, just a progressive one as opposed to originalist. But it most certainly isn’t semantic—that would require an examination of what qualities define personhood.


Perhaps we need to go looking for a case that forces the “qualities” of personhood into determination. In the landmark abortion/fetal rights case of Roe v Wade (1973), the respondent argued that a fetus was a person within the meaning of the Fourteenth Amendment, guaranteeing its right to life. In its decision, the U.S. Supreme Court noted that the Constitution does not define “person,” and found that there was no intra-textual support for a pre-natal interpretation, nor any legal precedent to support this interpretation either. But then, instead of addressing the issue head on, Justice Blackmun wavers, saying “[w]e need not resolve the difficult question of when life begins. When those trained in the respective disciplines of medicine, philosophy and theology are unable to arrive at any consensus, the judiciary, at this point in the development of man’s knowledge, is not in a position to speculate.” Nevertheless, it is apparent he is tempted at the prospect, responding to the conception theory of the beginning of life (and personhood) by pointing to the problems with this view caused “by new embryological data that purport to indicate that conception is a ‘process’ over time, rather than an event, and by new medical techniques such as menstrual extraction, the ‘morning-after’ pill, implantation of embryos, artificial insemination, and even artificial wombs.” So this court is not averse to scientific evidence suggesting the question is not as black and white as alive-person vs. non-alive-non-person, but it only applies that evidence one way, to prop up its “legal” conclusion that personhood has always begun at birth. The same process-not-event reasoning could just as easily be applied on the other end, i.e. in the days shortly before birth, against the argument that life and personhood begin at birth—especially since birth can occur prematurely both naturally and as a result of artificial inducement. But Justice Blackmun prefers his concept of the “potentiality of human life,” in which the State’s interest matures to the “compelling” threshold upon viability of the fetus. So, despite not meeting the definition of personhood (however arbitrarily derived), an intermediate category is carved out for the fetus and granted some protection. (Note also that there is a long history, emanating from English law, that a fetus can have a defendable interest in property that is contingent upon its being born.)

In the decades since Roe v Wade, a number of attempts to enact “personhood amendments” at the state constitution level have mostly failed to gain traction. However, in March 2012, the North Dakota House of Representatives passed an amendment to its constitution that “the inalienable right to life of every human being at any stage of development must be recognized and protected.” Reactions to this have included concerns that such a drastic redefinition would effectively outlaw not only abortions in all circumstances, but many reproductive technologies that involve production, storage, and disposal of excess embryos. It remains to be seen whether this amendment will survive a challenge founded on the U.S. Constitution and Roe v Wade. Nevertheless, political activism appears a more viable option for activism than legal challenges.

Non-human Animals

Of course, while fetuses’ presence at the blurry category boundary between non-life and life has obvious analogical relevance to cryonics patients, it is not a perfect model because it involves a presently unavoidable contest between the fundamental rights of two beings, the mother’s and the fetus’s (that is, if rights are imputed to fetuses at all). The question of non-human animal personhood does not pose this same issue, and there have been a number of interesting developments regarding the legal protection of these beings. However, despite how these are usually reported, none have granted “rights” to any animals, nor conferred upon them the personhood they would require in order to have rights, in the legal sense. Rather, of the numerous reports of non-human animals being granted rights, what has in fact occurred includes: (i) constitutional recognition of the “dignity” of animals, which need be considered by the state in regulating research activities (Switzerland, 1992), (ii) somewhat vague imperatives to protect animals by legislation (Germany, 2002), and (iii) expanded protections of some classes of animals, like the great apes, preventing their use in research or testing (New Zealand, 1999).

Attempts at legal activism towards non-human animal personhood have been less successful. In Citizens to End Animal Suffering and Exploitation v The New England Aquarium (1993), the Massachusetts district court held that Kama the dolphin lacks standing to maintain an action under the Marine Mammal Protection Act, as the Act only authorizes suits brought by persons. As we should be coming to expect by this point, the decision simply accepts as a foregone conclusion that animals are not persons without asking why. Similarly, in Cetacean Community v Bush (2004), the Ninth Circuit Court held that “the Cetaceans do not have statutory standing to sue,” as they are not persons— no deeper questions asked.

Nevertheless, the will behind these suits is strong. An organization called GRASP (Great Ape Standing & Personhood), hosts a model legal brief on its website titled “From Property to Person—The Case of Evelyn Hart,” however, the organization is not very active, and the brief itself has not been used. Much more impressive is the Nonhuman Rights Project (NHRP), headed by Steven M. Wise. The NHRP is working to identify American state jurisdictions that may be most receptive to animal personhood arguments, and which have retained the old, common law causes of action used by human slaves and their advocates to challenge their “unfreedom,” namely the writs of habeas corpus, and de homine replegiando. Wise sums the objective and strategy up thusly:

“James Somerset’s legal transubstantiation from thing to person at the hands of Lord Mansfield in 1772 marked the beginning of the end of human slavery. Persuading an American state high court to similarly transform a nonhuman animal is a primary objective of the Nonhuman Rights Project…. A court confronted with a plaintiff’s claim to possess any legal right need only determine the plaintiff’s species. If the plaintiff is human, the answer is, ‘It is possible that the plaintiff has the legal right she claims.’ If the plaintiff is a nonhuman animal, the answer is, ‘Impossible.’ The goal of the interdisciplinary Nonhuman Rights Project is to change this paradigm. It intends to demand that American state high courts declare that a nonhuman animal has the capacity to possess at least one legal right, to declare that she is a… legal person. Once a court recognizes her capacity, the next legal question is… which legal rights she should possess, an appropriate shift from the irrational, biased, hyper-formalistic, and overly simplistic question, ‘What species is the plaintiff?’ to the rational, nuanced, value-laden question, ‘Does the plaintiff possess the qualities relevant to whether she should be entitled to the legal rights she claims?’ ”

Whether one supports this objective or not, the approach is certainly admirable, and the relevance of the project, and other personhood initiatives to the issue of cryonics patient personhood cannot be denied.

Preliminary Conclusion

In the slave cases we see courts avoiding the question of what makes a person, deferring to legal precedent, historical context and textual analysis; we see the same in the women cases, the fetus cases, and the animal cases. Even though on occasion the decisions flow with the progressive expansion of personhood instead of against it, there is definitely a resisting inertia, especially in the cases where the claimants cannot speak for themselves (fetuses, non-human animals). Generally, it appears that political activism reaps the greater gains, especially, of course, where the status quo is entrenched in statutory law as opposed to common law, as it was in the status of slaves in the U.S.

In light of this, it seems that achieving reclassification of cryonics patients to persons through the courts would be somewhat unlikely at this juncture—not that anyone is seriously advocating for it right now. However, looking at the allimportant fetal rights case, Roe v. Wade, we do see some willingness to consider scientific data that threatens previously binary legal concepts of life and death, and also to carve out intermediate categories therein which receive enhanced protections. Because courts have been so reluctant to comment on what qualities make a person, it is not easy to say what kind of evidence would need to be brought in order to carve out a similar intermediate category for cryonics patients. I would hazard a guess that the “potentiality of life” would need to be known, and I think this goes further than retrieving organized electrical activity from cryopreserved brains. I think whole animals would need to be resuscitated from cryopreservation—with return of cognition and “personality.” Then legal arguments could be made that humans cryopreserved with the same process (or close), who are not yet being resuscitated because the procedure needs to be refined before it would be ethical to attempt on humans, contained the same “potential” for life, and should receive some heightened protection from interferences. The capacity to have contingent interests in property might also be obtainable at this point.

Otherwise, as we see from history, political activism remains an option. And cryonics patients do have the advantage of being able to speak out for themselves prior to becoming voiceless patients. What we lack, currently, is numbers, both in actual membership and also moral supporters. Hopefully that will change as time goes on, but in the interim there are still opportunities for legal activism and innovation that would increase the protection of cryonics patients, both before and after cryopreservation, as well as the protection of their assets. Attempts by governments to regulate cryonics represent possible opportunities to bring constitutional challenges on the basis of cryonicists’ liberty and freedom of belief. Corporate personhood may also present a bootstrap solution to some of the problems caused by cryonics patients’ loss of personhood, which I will address in a future article.

First published as a regular column called In Perpetuity in Cryonics Magazine, July 2013.

30. September 2016 · Comments Off on The Valley of the Shadow of Death · Categories: Cryonics, Death, Society

The “uncanny valley” is a theory described in 1970 by robotics professor Masahiro Mori which posits that as a robot’s appearance becomes more human-like, observer affinity towards it will increase until the likeness reaches a certain threshold, after which affinity will drop sharply into the negative—the uncanny valley—before rebounding again towards levels exhibited toward ordinary, healthy-appearing humans.[1] The theory has received more widespread exposure since the advent of 3-D animated films, where attempted realistic depictions of human characters have sometimes resulted in quite negative viewer reactions, citing “creepiness” of the characters, despite animators’ efforts to render them as close to life (and presumably not-creepy) as possible.

The phenomenon is not unique to humans—it has been observed in monkeys presented with photographs and 3-D rendered images of monkey faces of varying degrees of realism. Mate selection and pathogen avoidance have been suggested as possible evolutionary reasons why subtle deviation from appearance norms would evoke a stronger negative response than a more substantial deviation. However, one researcher, Roger K. Moore has come up with an explanation of the uncanny valley effect, using Bayesian models, that suggests that the effect applies to all conceptual categories (to some degree), not just human vs. non-human.[2]

According to Moore, “the uncanny valley effect is a particular manifestation of… [the] ‘perceptual magnet effect’, in which stimuli close to a category boundary are judged by observers to be more dissimilar than stimuli that are away from a category boundary”. Where membership in one category or the other is determined by reference to more than one perceptual cue, and these cues are in conflict with each other, the differential distortion that results at the class boundary will cause “a form of perceptual ‘tension’… [that] may be experienced as physical or emotional discomfort, e.g. feelings of eeriness or creepiness.”

Moore posits that the drop in affinity described by Mori is a function of (1) decreased familiarity near the class boundary between a ‘target’ perception (i.e. human) and a ‘background’ perception’ that does not overlap significantly with the target (i.e. non-human), and (2) perceptual tension arising from conflicting cues to category membership. Individual observers have varying sensitivities to perceptual conflict, so the depth of the valley will differ from observer to observer, but the feelings of creepiness/eeriness “may induce the observer to take action in such a way as to reduce its effect.” Moore suggests four possible behavioral responses: withdrawal, attack, willfully ignoring one or more conflicting cues (‘turning a blind eye’), or integrating the new information into the category schema (i.e. habituation). Which behavior results from a particular stimulus depends on the stimulus itself, and intrinsic properties of the observer. Moore’s model even accounts for the different curves Mori proposed for still human-like artifacts versus moving ones. However, Moore asserts that “the model derived here provides a more general mathematical explanation… for a range of real-world situations in which conflicting perceptual cues give rise to negative, fearful or even violent reactions.”

One piece that I believe is missing from Moore’s explanation of the uncanny valley is the role that observer category membership plays. I suspect that the sensitivity of an observer to particular perceptual tension, and the nature of the behavioral response exhibited, may depend in part on whether the target perception is a category the observer considers themself to be a member of. This would explain why the effect seems more pronounced when the target perception is ‘human’. It may be that the individual observer sensitivity Moore discusses is generally higher when the cue conflicts force introspection into why the observer themself is a member of the target category, which could result in feelings of insecurity as cues previously assumed to be sufficient for determining category membership need to be reconsidered. It may also be relevant whether the observer considers themself to be a core member of the target category, or on the fringe—or alternatively, a member of the background category.

Now, let us consider cryonics. Might the uncanny valley theory shed some light onto why cryonics has such a difficult time garnering public and mainstream scientific support? I think it can. Mike Darwin has written about the conflict between cryonicists and cryobiologists, pointing out that there was not always a “war” between them, and that “[s]everal cryobiologists who later became some of the most vocal critics of cryonics were not only not hostile, but actually demonstrated interest in and support of cryonics; particularly with an eye towards getting money to pursue cryobiological research.”[3] Several cryobiologists sat on the Science Advisory Council to the Cryonics Societies of America in those early years, and Arthur Rowe, who went on to become a prominent anti-cryonics cryobiologist, at one time even wished Robert Ettinger “continued success in [his] endeavors”, was consulted for his expertise in an early cryonics case… and obliged! Though the collapse of the Cryonics Society of California and tragic loss of the patients at Chatsworth no doubt contributed to rising anti-cryonics sentiment, it is interesting that the move to ban cryonicists from entry to the Society for Cryobiology appeared to occur in reaction to close exposure to “medicalized” cryonics in an impromptu presentation by Darwin at the Society’s meeting in 1981.

This negative reaction by cryobiologists to the arrival of cryonics as a serious scientific endeavor can be explained using the uncanny valley theory. The target category here is clear enough—cryonics aspires to be recognized as a medical procedure. But what is the background category causing perceptual tension? One option is quackery, and certainly many public comments from scientists superficially seem to support this. However, remembering back to Moore’s explanation of the uncanny valley, perceptual tension arises from conflicting cues to category membership near the boundary between categories with low overlap, whereas quackery and actual medicine share many perceptual cues in common (if they didn’t, the snake oil wouldn’t get sold). So while we might not expect scientists to provide ringing endorsements of a practice they perceived to sit near the boundary between quackery and medical procedure, we also would not expect a previously neutral (and in some instances positive) response to shift sharply into the negative as a result of that same practice transitioning towards operating on a more rigorously scientific basis.

I believe the background category causing the trouble is ritual burial practice. The tip-off is that the regulators that anti-cryonics agitators invariably prod to clamp down on “cadaver freezing” are state funeral boards—even though the supposed cause for governmental intervention is that “it won’t work,” a standard which would never be applied to beliefs associated with other burial practices. This approach is illogical: a better strategy against cryonics would be to push for its regulation within the medical establishment, and in particular any devices which fall under FDA’s authority over “medical devices.” This strategy would require cryonics to prove its efficacy, which of course, by presently accepted definitions, cannot be done. Instead, cryonics is shoved in the direction of regulators responsible for burial practices and other modes of disposition of human remains, where, of all places, it might actually have a chance of being protected on the basis of the practitioners’ beliefs. It is telling, too, how often negative responses by scientists to cryonics will ignore or distort well-established science, often from their own field. To me, this all points to the irrational/emotional nature of these responses—many of these researchers no doubt consider themselves members of the extended medical community, and are trying to put distance between themselves and something that looks like them and talks like them, but is nevertheless decidedly not them. Without necessarily realizing it, their instinctive reaction is to push cryonics back towards the background category causing the perceptual conflict.

Ritual burial practice and medical technology are far more dissimilar from each other than medicine and quackery, and thus Moore’s model would predict any cue conflict near the class boundary to cause perceptual tension. Here, cryonics is the perfect storm of conflicting cues: it is a procedure performed after the person is already declared dead, that looks at first like attempts to resuscitate, followed by surgery (possibly involving decapitation) and then preservation, with the ultimate objective of continued life in an as-yet-unknown form, on the basis of a theory that can never be absolutely disproven… so long as the person’s remains are left undisturbed. These perceptual cues are a complete and utter jumble, pointing 100% in both directions at the juncture of life and death.

And if that all weren’t confusing enough, what role might the category of ‘scientific research’ have in this? We utilize anatomical gift legislation to effect transfer of the body for the purpose of research, but then refer to our specimens as “patients” and wait for other research to produce the evidence and technology in order for this research to become a medical procedure. In my opinion, the ‘scientific research’ label is a red herring—it has obvious utility for us, but it is a loose foothold in the uncanny valley, given how candid we are about our objectives.

So, will any amount of R&D short of actually resuscitating someone increase our public approval, or will it just heighten perceptual tension and plunge us further into the valley? Moore’s model tells us that individual sensitivity to perceptual tension isn’t something we can directly control for, other than perhaps through desensitization, but that is hard to accomplish with a movement so small. Also, some of the conflicting perceptual cues are not ones we can change. If our objectives sound quasireligious to others, we can try to explain how we reject the ordinary definition(s) of death while still being rational people—but if they are not persuaded, there’s not much else we can do other than keep building up our evidence, brick by brick. However, we may be able to reduce cue conflict on other dimensions. We can accomplish this by continuing to emulate medicine in more positive ways, and also by de-emphasizing cues that pull the other direction (i.e. the trend away from the word “immortality” is a good one, at least for the public acceptance of cryonics).

The current legal definition of death is a source of perceptual conflict that we may not be able to do much about just yet, but in the interim, we can at least try to minimize its apparent importance to the procedure. Reliance on life insurance to fund cryonics arrangements seems to pull in the wrong direction, as we are opportunistically capitalizing on a definition of death we fundamentally disagree with, in order to afford an opportunity to disprove it— to our benefit. Of course, for many life insurance is the only real means of access available to them, but perhaps down the road, we could negotiate or design a new form of insurance specific to cryonics, formally triggered not by the patient’s legal death, but initiation of cryonics procedures. This is really just a rose by another name, but it would also finally put to rest that old worry that the insurers will come back for their money if the patient is resuscitated.

A feature of mainstream medicine which is conspicuously underdeveloped in cryonics are surrogate decision makers for patients post-cryopreservation. As it stands currently, cryonics organizations have complete or near-complete authority over their charges, and while this is for the good purpose of preventing interference by third parties, it does give the appearance that the patients are essentially the property of the care provider. Given the potential time frames we are looking at, recognizing something like a power of attorney for health care, in cryonics care, still might not stretch far enough, unless it contained a power to delegate the authority further, or was vested in a trusted organization instead of an individual. Due to the legal status of the patients, the cryonics organizations would have a lot of latitude in designing what exactly their obligations were to the patient’s representatives, postcryopreservation, keeping in mind the precarious and high stakes nature of the cryonics venture. However, one scenario which should be seriously considered, is under what circumstances a surrogate decision maker (or self-regulatory body, see below) could insist that the patient be moved.

Another aspect of medical practice which cryonics can and probably should emulate sooner or later is self-regulation. Mainstream medicine is of course regulated through a mix of government and professional self-regulation, and the cryonics organizations’ proactively developing shared standards and oversight mechanisms will give the public confidence that whatever the patients’ status is in law, they are being treated with due care and respect. In the same vein, self-regulation may help ward off the risk of inappropriate government regulation down the road.

These are only a few ideas of how to keep non-research, non-technical dimensions of cryonics progressing smoothly toward recognized medical practice, mitigating as much as possible any perceptual tension with the background category of ritual burials.

If the uncanny valley theory holds true, there’s a high mountain of public acceptance on the other side waiting. The question is, have we already reached the bottom?


[1]: Masahiro Mori, “The Uncanny Valley”, 7 Energy 4 (1970) 33-35. Available online (English): http://spectrum.ieee. org/automaton/robotics/humanoids/ the-uncanny-valley

[2]: Shawn A Steckenfinger & Asif A Ghazanfar, “Monkey visual behavior falls into the uncanny valley” 106 PNAS 43 (2009) 18362-18366. Available online: http://www.pnas.org/ content/106/43/18362.full

[3]: Roger K Moore, “A Bayesian explanation of the ‘Uncanny Valley’ effect and related psychological phenomena”. Scientific Reports 2, Article 864. Published online, November 16, 2012: http:// www.nature.com/srep/2012/121115/ srep00864/full/srep00864.html

[4]: Mike Darwin, “Cold War: The Conflict Between Cryonicists and Cryobiologists”. Cryonics, June, July, August 1991. Available online: http://www.alcor.org/Library/ html/coldwar.html

First published as a regular column called In Perpetuity in Cryonics Magazine, June 2013.

27. September 2016 · Comments Off on Reintegration, Personalized · Categories: Cryonics, Death, Society

The latter half of therapeutic cryopreservation involves three “R”s: resuscitation, rehabilitation, and reintegration. Of the three, reintegration receives the least attention as to its content, so permit me to deconstruct it a bit before diving straight in. First off, it’s re-integration, so like re-resuscitation and re-habilitation, we are talking about some present state or condition that we want to return to – in this case, a state of integration, of being part of a larger whole. By identifying a need for something called reintegration, we are predicting that being awakened from a cryonic slumber, even with every memory intact and in perfect health, is not going to be the same as going to sleep one night and waking up the next morning. The world around us will have changed – possibly quite dramatically – and all that we were prior to cryopreservation may not be enough to immediately begin operating as part of the larger whole as we did before. However, none of us is integrated into all subsystems and sub-communities of the larger human social organism at the same time, and to the same degree. So when we talk about reintegrating revived cryonics patients, are we talking about bare, functional integration into the community immediately around the cryonics facility, or something more than that? And either way, how will we measure success of reintegration? According to the norms at the time of revival, or somehow relative to the individual’s first integration?

I think it is problematic to think of reintegration as a general, one-size-fits all process that will not require extensive, non-medical background knowledge of the individual patients. Reintegration is as much about how to fit resuscitated patients back into tomorrow, as it is about how they already fit into today. By leaving the reintegration problem entirely to our friends in the future, we may be allowing data about the patients which would greatly assist with reintegration slip through our fingers to be lost in the sands of time.

But there is another problem that is closely related to the reintegration problem, and that is fear of dis-integration, which is really combination of two things: fear of separation from features of one’s present integration, especially family, friends, but also wealth and possessions; and fear of not having a “place” in the future, of not having a reason to get up in the morning, or as the Japanese call it, ikigai. This problem was very well encapsulated in a recent segment on cryonics on the television show “The Doctors,” when one of the panelists was asked if she would want to be cryopreserved. After her resolute “No,” she was asked why not, so she quickly elaborated, “Well, everybody else you love is not there. Why would you want to be around without people you love?” In reply, one of the more openminded panelists suggested, “Well, freeze everyone then!” There is a certain logic to this, but social inertia being what it is, it is not a very persuasive argument to someone on the fence (or the other side of it) today.

Nor is such fear soothed by simply telling people that we (or our successors) will figure out how to tackle the reintegration problem closer to the relevant time. And by not addressing people’s fear of disintegration more effectively by making tangible efforts today to assist reintegration tomorrow, we may be hampering our own growth, potentially hindering the pace of development and thus prolonging revival for all patients – making the task of their eventual reintegration all the more difficult.


It probably goes without saying that reintegration has legal components to it. The one which has received the most attention thus far is asset preservation, but this and most other legal aspects of reintegration rely on the threshold issue of personhood. Legal personality is quite fundamental to our current integration, as is the continuity of that legal personality over time, based on various identifying data like our names, unique appearance, date of birth, etc. Maybe some of us wouldn’t mind fresh starts, but for the sake of exploration I’m going to assume that, given the choice, most cryonicists will want to be recognized as continuations of who they are today, same as we would for any other lapse of consciousness. But for all the good of waking up feeling like we are the same person we were prior to cryopreservation, and expressing that feeling, how do we prove that is what we are? We wouldn’t expect to have much of a problem in an idealized (and impossible) revival scenario that just involved thawing the patient, waking them up with a sharp pinch, and going about curing the disease that caused their initial legal death – but clearly more is going to have to be done  for today’s patients than that. So the question is, how much deviation from that fictional ideal will the legal system of the day be able to tolerate before concluding that the resuscitated patient is not a continuation of the previous person – or maybe not a person at all! Those who are setting up trusts for their resuscitation may be able to work around the issue of continuity of legal personality by dictating that their cryonics organization and trust advisors are responsible for “recognizing”’ them, but without legal personality, the resuscitated patient may have rather a difficult time using those saved resources, not having recourse against those who might try to take them away, or even being able to enter into simple contracts.

Law is highly contextual, and particularly sensitive to place and time. We can only make predictions about what the legal result will be of certain facts tomorrow or the next day because we can predict with a reasonably high degree of certainty what the governing rules will be tomorrow or the next day. This gets a lot harder when we are talking about some decades in the future, though we can certainly try to make reasonable guesses about the larger context to which the system will have already had time to react and adapt. For example, it seems improbable that a cryonics organization would attempt an uploading method of resuscitation without it being previously established that apparently self-aware, conscious, intelligent beings can exist on substrates other than biological brains. Thus, the political and legal organs of the day should have already had opportunity to develop a rule on whether such beings are “persons,” and rules governing the effect of copying and transferring them, etc. But is it reasonable to assume that the rules arrived at will be the ones we want, when and where we want them? We can think ahead to all sorts of good arguments supporting our positions on the matter, but we can’t argue them unless and until we actually get there. It seems more practical to advocate for greater recognition and protection of cryonics patients now, through public awareness campaigns, lobbying and legal efforts.

Our Living Family

Some of the more logistical aspects of reintegration are equally ripe for present action. Practically speaking, the closest analogues to revived cryonics patients today are survivors of very long comas. However, only the longest of long comas are remotely comparable to the scale of temporal displacement cryonics patients are looking at, and survivors of such long comas are very rare. As such, good evidence for successful reintegration strategies is unfortunately lacking. However, one shared feature of several of the cases I found was extraordinary commitment of the patients’ families and/or spouses.[1] In fact, this is usually cited as the reason the patient recovered at all – and to some extent that may be true, given that long-term coma patients without such persistent advocates and caregivers might not be expected to receive the same quality of care, and thus survive long enough to reawaken. But surely reintegration, too, is facilitated by involvement of family, just as it is during our first integration in childhood. This got me thinking about whether my family (and friends) would remain connected to me and my care, if I were cryopreserved tomorrow. Would they scan the science headlines for relevant advancements? Would they check in periodically on the health of my cryonics organization? And even if they did at first, how long would their interest last? Would I have any connection to the people at my bedside upon resuscitation?

Well, maybe I would, because I am fairly integrated with the cryonics movement itself – but that is not going to be the case for everyone, and by leaving it entirely up to the patients’ families and friends to remain engaged… well, results may vary. Here, we have a real opportunity to personalize integration. What if cryonics organizations were to track their patients’ family trees, periodically reaching out to new members of the family (once they are old enough to understand) to inform them that they have a relative being cared for in cryostasis? Sadly, there are probably many cryonicists today whose immediate family are resistant or indifferent to their wishes, but perhaps the next generation will find the novelty intriguing. Ongoing family engagement could potentially benefit the patients’ cryonics organizations in the form of donations, and even new members. The real payoff, though, would be to have relatives of the patients on hand to greet them upon resuscitation, and hopefully assist with the reintegration process – maybe even hosting them with some financial assistance from the Patient Care Trust (and/or personal resuscitation trusts, where existing). Even if average human lifespan does not increase significantly in the decades ahead, the older living relatives of revived patients may not be very many generations removed from them.

Right now, the familial data collected by Alcor and CI as part of the sign-up process is significantly less than what most people can rattle off the top of their heads in the way of names of grandparents, aunts, uncles, and cousins. While a cryonics organization may have some ability to obtain this kind of information via medical records after the patient’s legal death, it would certainly be much easier to get it while they are alive. And that still only gets us part of the way. Where I live, at least, vital statistics information on births, marriages and deaths is not made publicly available for genealogical research until many decades after they occur. Part of keeping the family engaged with the patient would involve asking for their assistance in filling in our picture of the patient’s family tree as it grows new branches. This information may also be obtainable by scouring the web and social media, but the point is not to passively track the patient’s living genealogy in the most efficient manner possible – it is about the cryonics organization maintaining an active relationship with the family, keeping the connection between patient and family alive.

Arguably, this is a lot of work to identify relatives who might be tracked down with the aid of genetic data closer to the day, but I think the power of this idea is more than just the possibility of having patient relatives at bedside for resuscitation, but rather in the effort we make in keeping the family informed, and if they’re willing, engaged. It’s about what we can say we are doing, to the person who expresses to us that, in effect, their fear of being revived permanently separated from their families and loved ones is greater than their fear of death.

These are only some of multiple aspects of reintegration that I think can be constructively brainstormed and worked on today. I will be exploring more at the upcoming Symposium on Resuscitation and Reintegration of Cryonics Patients, hosted by the Institute for Evidence Based Cryonics in Portland, Oregon on May 12, 2013.


[1] Annie Shapiro, 30 years. Jan Grzebski, 19 years. Terry Wallis, 19 years. (Wallis was actually in a minimally conscious state, but the effect is the same, for our purposes.)

First published as a regular column called In Perpetuity in Cryonics Magazine, May 2013.

16. September 2016 · Comments Off on The Multi-Headed Hydra · Categories: Science, Society

This article explores some of the regulatory challenges facing those who would bring rejuvenation biotechnologies, like those pursued by Dr. Aubrey de Grey and the SENS Foundation, to market. It does not presume familiarity with Dr. de Grey and his work; I’ve tried to make it informative to all alike.

The Conquest of Aging

Biomedical gerontologist Aubrey de Grey predicts that the first human being to live to 1,000 years old is alive today. Who exactly that person might be – or rather, how old they are today – is a detail that Dr. de Grey has wavered on, but he has remained firm in his commitment to that prediction, and is certainly one of the most prominent figures working towards realization of the technologies required to make his prophecy reality. In his book, Ending Aging, Dr. de Grey describes his proposed approach to the “problem” of aging, and how it differs from those presently in practice.[1]

In Dr. de Grey’s opinion, the current paradigm devotes a vast majority of resources to geriatric care, which attempts to cure or manage age-associated diseases only after they emerge as recognizable groupings of symptoms. To quote an apt metaphor from another longevity advocate:

“[T]he challenge of treating illnesses in the elderly must at times seem like Heracles’ trials of combating the multi-headed Hydra. Each time one head was severed, two more would sprout in its place. Likewise, a patient might survive a serious cardiac episode with help of antihypertensive drugs only to succumb to cancer and dementia.”[2] [emphasis in original]

Meanwhile, the (significantly smaller) remaining portion of research dollars goes towards biogerontology, which studies the upstream causes of aging, any benefit of which is probably unrealizable for several human generations. However, Dr. de Grey argues that without necessarily knowing much more about the upstream causes of aging than is currently understood, it is already possible to categorize the different forms of aging “damage,” and devise therapies that will repair the damage at a sufficient rate to achieve what he terms “longevity escape velocity.”

Dr. de Grey calls his theory “Strategies for Engineered Negligible Senescence” (SENS). There are seven strategies, each related to one of the seven major categories of aging damage thus far discovered. Those categories (and proposed therapies) are: (1) cancer-causing nuclear mutations (removal of telomere-lengthening machinery, aka OncoSENS); (2) mitochondrial mutations (allotopic expression of 13 proteins, aka MitoSENS); (3) intracellular junk (novel lysosomal hydrolases, aka LysoSENS); (4) extracellular junk (immunotherapeutic clearance, aka AmyloSENS); (5) cell loss & tissue atrophy (stem cells and tissue engineering, aka RepleniSENS); (6) cell senescence (targeted ablation, aka ApoptoSENS); and (7) extracellular crosslinks (AGE-breaking molecules and tissue engineering, aka GlycoSENS). The SENS Foundation was established in 2009, helped in part through seed funding provided by Peter Thiel, co-founder of PayPal and a managing partner of The Founders Fund. The SENS Foundation’s stated purpose is “to research, develop and promote comprehensive regenerative medicine solutions for the diseases and disabilities of aging.”[3]

Delving into the details of each of Dr. de Grey’s proposed strategies is beyond the scope of this article, but it is worth taking a closer look at one of the seven. LysoSENS aims at “junk” molecules which cannot be broken down by human lysosomal enzymes. Over time, these molecules accumulate within cells, contributing to conditions like macular degeneration, atherosclerosis, and Alzheimer’s disease (AD)[4]. Dr. de Grey’s proposition is to search for novel lysosomal enzymes (novel to humans, that is) in bacteria, molds, and other microbes that are involved in “recycling” dead animal bodies, since the “junk” inside our cells is — along with the  rest of us — food to them. SENS research being carried out at Rice University has already identified one such enzyme that, when targeted to the lysosome, decreases cytotoxicity of 7-ketocholesterol (7KC), an oxysterol associated with atherosclerosis and Alzheimer’s disease.[5] Enzyme replacement therapy is already used for the treatment of lysosomal storage diseases not associated with aging, like Gaucher’s disease. Insofar as it could be used to treat a condition (or conditions) remedially, a therapy targeting 7KC with a novel lysosomal enzyme might otherwise resemble traditional approaches to disease treatment, but it could also be used preventively. Other SENS pose even greater challenges to the traditional distinctions between cure, prevention and enhancement. The objective of MitoSENS, for instance, is to render the recipient immune to the fallout consequences of mitochondrial DNA mutations by placing backup copies of the thirteen mitochondrial genes — which naturally reside only inside the mitochondria — into the cell nuclei. Significant research progress is being made into this strategy as well.[6]

The problem of normative definitions of aging

Dowsing for fountains of youth is well and good, but won’t get us very far unless they can be tapped and piped to the marketplace, and while there are many scientific obstacles to overcome before rejuvenation biotechnologies are realized, there are also social, political and legal ones. Many of these problems are definitional. For one, what exactly distinguishes age-associated diseases and conditions from “normal” features of aging? In the words of one scholar: “[F]rom the perspective of modern biogerontology, there is little to distinguish biological ageing from a disease state…. To argue that ageing is not a disease by virtue of its universality is as misleading as it is to argue that the Basenji is not a dog because it does not bark.”[7] But to dismiss this debate as purely semantic or philosophical would be to misunderstand the true difficulty the definitional problem poses.

The U.S. Food, Drug and Cosmetic Act defines “drug” as, inter alia, “articles intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease in man or other animals” and “articles (other than food) intended to affect the structure or any function of the body of man or other animals.” [8] So far so good, because even if the U.S. Food and Drug Administration (“FDA”) did not agree that a particular undesired physical state was a “disease” for the purposes of the first definition, it would be difficult to deny that a proposed therapeutic (whether a chemical entity or a biological product[9]) was not intended to affect the structure or functioning of the body, at some level. However, present regulatory approval pathways indirectly require that a drug be “indicated for the treatment, prevention, mitigation, cure, or diagnosis of a recognized disease or condition or of a manifestation of a recognized disease or condition, or for the relief of symptoms associated with a recognized disease or condition.”[10] [emphasis mine]. The phrase “recognized disease or condition” is not defined in this context[11], and the FDA is not itself the recognizer, but rather looks for consensus within the clinical and/or scientific communities regarding the existence of a particular disease or condition, and of clear criteria for clinical diagnosis thereof.[12] To quote one author: “To the extent that many problems of ageing have not been formally recognized by any of these processes, the FDA has no clear guidance on how to determine if a proposed indication would be acceptable.” [13]

For many age-associated conditions, the question of “recognition” is a valueladen debate. While some commentators will no doubt accuse longevity advocates of “disease-mongering”[14], Dr. de Grey would probably argue that that sort of reaction is a symptom of what he terms the “pro-aging trance”[15] — a terror management strategy that accepts and embraces the apparently unavoidable progressive wasting of one’s body (and mind), instead of rejecting and resisting it. But the cognitively dissonant distinction between normal, “healthy” aging on the one hand, and “diseases” of aging on the other is not impermeable. For some historical perspective, it is worth considering the example of Alzheimer’s disease. When it was first described in 1910, AD only included what is now referred to as “earlyonset Alzheimer’s disease,” i.e., when the symptoms of “senile dementia” appeared in someone under 65.[16] Due to its vastly less frequent incidence, this “presenile dementia” was assumed to be distinct from the normal variety. However this normal/ abnormal categorization broke down in 1977, due to professional recognition of their near identical symptomologies, making the early-onset subtype by far the minority of AD incidence.[17]

A present-day example of this process of recognizing “normal” features of aging as diseases or conditions of aging, is the case of sarcopenia. Sarcopenia (literally “poverty of the flesh”) describes the degeneration of skeletal muscle mass and strength that occurs with aging that contributes (in part) to disability, frailty, and morbidity in older persons.[18] Until fairly recently, sarcopenia and related conditions like sarcopenic obesity were considered “normal” aspects of aging, much like senile dementia prior to 1977. To be fair, both sarcopenia and senile dementia are normal, insofar as they are common conditions in older persons — but that does not mean they are untreatable, nor that they should be left untreated. A number of potential drug targets have been identified that may be of use in treating sarcopenia[19], but if consensus recognition of the condition is lacking there may not yet be a regulatory pathway for licensing therapeutics to treat it.[20]

Thus, as it stands, forging a regulatory pathway for treatments of a common, disabling (and in some cases indirectly lethal) feature of aging involves two distinct steps: first, persuade the scientific and clinical communities that a particular symptomology of aging can and should be treated, and second, persuade the FDA that everyone else is persuaded. But this is not insurmountable. The European Working Group on Sarcopenia in Older People published a “practical clinical definition and consensus diagnostic criteria for agerelated sarcopenia” in 2010[21], which was followed by a consensus definition from The International Working Group on Sarcopenia in 2011[22]. In the U.S., the Foundation for the National Institutes of Health, the National Institute on Aging, and the FDA held a Sarcopenia Consensus Summit on May 8-11, 2012.[23] A number of clinically meaningful end points have been proposed for assessing treatment efficacy[24], including patient-reported outcomes.[25] Under appropriate regulatory supervision, medicalization of sarcopenia would help older persons maintain or even regain functional independence and quality of life — and perhaps boost lifespan, via a reduction in comorbidity with diseases like osteoporosis.

The problem of causally interrelated disease states

There is another definitional problem: What distinguishes one age-associated disease from another? This may seem like a facetious question, given the obvious symptomatic differences between atherosclerosis and AD. However, as mentioned above, the oxysterol 7KC has been implicated in the pathogenesis of both those disease states. If 7KC is indeed a metabolic byproduct that is causally related to both atherosclerosis and AD then, in addition to being a promising drug target itself, it could conceivably qualify as a surrogate endpoint for clinical trials of new drugs indicated for those diseases. FDA has issued a draft guidance regarding qualification of biomarkers as drug development tools[26], but surrogate endpoints may only be used in lieu of direct measures of clinical benefit under the FDA’s “Fast-Track Program,” which is only available for new drugs intended for the treatment of a serious or lifethreatening condition and that demonstrate the potential to address unmet medical needs for such a condition.[27] However, it would not be necessary to qualify 7KC reduction as a surrogate endpoint for both AD and atherosclerosis. Doing so for one or the other based on which is thought to be the more serious condition and/or the greater unmet need would allow its use in a fast-tracked New Drug Application for the one indication, and then if safety and efficacy in humans is established and the therapeutic is approved, data from (likely compulsory) post-marketing studies could be used in a new indication claim for the other condition.

Surrogate endpoints need only be “reasonably likely to predict clinical benefit”[28], and some commentators have pointed out that applying this lower standard to the screening of surrogate endpoints may result in drugs approved on the basis of evidence of an effect on a biomarker which, while related to the disease, is not actually causally related to any clinical benefit.[29] Of course, given its ambitious objective, the SENS Foundation has a strong vested interest in tying 7KC to clinical benefit, and the fact that FDA-qualified biomarkers are released into the public domain also fits within the Foundation’s public interest mandate, and could enhance perceptions of the legitimacy of its research goals. But more importantly, it could shorten clinical trials, an oft-criticized source of delay and drug costs. While its work to date has primarily been proof-of-concept research, in the future the SENS Foundation might devote some of its resources to running forms of aging damage like 7KC through the biomarker qualification process. Although publishing both the proof-of-concept and such valuable drug development tools might cut out some of the traditional patenting opportunities[30], it also offsets costs ordinarily borne by pharmaceutical companies. A little low-hanging fruit might stir up some productive competition in an industry sometimes criticized for chasing after minor therapeutic improvements and patent trolling.

Another option that is very in line with the social agenda of longevity advocates would be to promote the rebranding of multiple disease states with significantly overlapping low-level chemistry as single unified conditions that present varied symptom groupings based on exposure to particular environmental factors (including the endogenous “environment,” like certain genes or epigenetic variations, along with more traditional exogenous contributors like diet, exercise, etc). Admittedly, this would be the more difficult path, because it relies on the two-step process of disease recognition, discussed above, and considering how long it took AD and senile dementia to be folded into AD with an early-onset subtype, trying to replicate this process with diseases that present as differently as atherosclerosis and AD may be a Sisyphean task. On the other hand, academic pressure of this kind could have trickle-out effects on the public, re-situating the discourse of age-associated diseases further upstream, pressing on towards greater recognition of aging as disease.

Finally, slight augmentations to the SENS branding could be in order. Dr. de Grey gave unique names to his proposed strategies (LysoSENS, MitoSENS, etc.), but not to the categories of damage which are the targets of those strategies. Devising and promoting novel medical names for these categories of damage, like idiocytotoxicosis[31] for the “intracellular junk” targeted by LysoSENS, might prompt frame-shifting in the academic and clinical communities that could consequently (albeit indirectly, and thus probably slowly) broaden the scope of “recognized disease or condition”. Sadly for the planet, ‘junk’ doesn’t seem to be something humans take terribly seriously — idiocytotoxicosis, on the other hand, well that’s clearly a monster. Perhaps this suggestion borders on “disease-mongering” — but isn’t that term itself equally agenda-driven, given the not-so-subtle association with war-mongering? Dr. de Grey and other longevity advocates consider themselves to be on moral high ground, so these kinds of accusations are only of consequence if they provoke counter-productive public response, and reframing well-recognized diseases like AD and atherosclerosis as symptoms of underlying “metabolic pathology” can hardly be characterized as “questionable new diagnoses — like [premenstrual dysphoric dysfunction] and social anxiety disorder — which are hard to distinguish from normal life,” the likes of which give at least one critic concern. [32] And perhaps it is the very idea that “normal” is the ultimate objective — as opposed to simply “better” — that is the problem.

What’s the alternative?

If the perceived burden is too high, and the cost of doing nothing too great, stakeholders may look to circumvent the FDA. The SENS Foundation characterizes the assault on aging as the next space race.If the U.S. doesn’t take action to foster local development of what will assuredly be highly sought-after therapies, the movement may simply move underground (i.e. further in the vein of DIYbio), and overseas (medical tourism, and seasteads), which will only hamper the FDA’s mandate to protect Americans from harm.


[1]: Aubrey de Grey & Michael Rae, Ending Aging: The Rejuvenation Breakthroughs That Could Reverse Human Aging in Our Lifetime, (New York: St Martin’s Press, 2007).

[2]: David Gems, “Tragedy and delight: the ethics of decelerated aging” (2011) 366 Philosophical Transactions of the Royal Society B [Phil Trans R Soc B] 108 at 110.

[3]: SENS Foundation, SENS Foundation, online: <http://www.sens.org/about-thefoundation>.

[4]: Jacques M Mathieu et al, “7-Ketocholesterol Catabolism by Rhodococcus jostii RHA1” (2010) 76:1 Applied and Environmental Microbiology 352.

5]: Jacques M Mathieu et al, “Increased resistance to oxysterol cytotoxicity in fibroblasts transfected with a lysosomally targeted Chromobacterium oxidase” (2012) Biotechnology and Bioengineering, online:
<http://www.wileyonlinelibrary.com> DOI 10.1002/bit.24506.

[6]: SENS Foundation, Research Report 2011, online: <http://images.sens.org/reports/ SENS%20Research%20Report%202011.pdf>.

[7]: Supra note 2 at 109.

[8]: 21 USC § 321(g)(1).

[9]: 42 USC § 262(i). The phrase “analogous product” has been used to justify the extension of the FDA’s regulatory authority to human cells, tissues, and cellular and tissue-based products (HCT/Ps). See also Areta L Kupchyk, “Approval of Products for Human Use” in HB Wellons et al, Biotechnology and the Law (ABA, 2007) 591 at 617, note 41

[10]: 21 CFR § 201.57(c)(2) Specifically, this is a labeling requirement, but if a drug cannot be labeled according to the regulation, the New Drug Application cannot be approved. See also 21 CFR § 201.56.

[11]: The term disease is defined in 21 CFR §101.93(g) for the purposes of disease claims relating to dietary supplements, but that is only applicable in that context. See also 21 USC 343(r)(6).

[12]: William J Evans, “Drug discovery and development for ageing: opportunities and challenges” (2011) 366 Phil Trans R Soc B 113 at 114.

[13]: Ibid at 114.

[14]: Barbara Mintzes, “Disease Mongering in Drug Promotion: Do Governments Have a Regulatory Role?” (2006) 3:4 PLoS Medicine e198.

[15]: Aubrey de Grey, “Combating the Tihtonus Error: What Works?” (2008), 11:4 Rejuvenation Research 713.

[16]: GE Berrios, “Alzheimer’s disease: a conceptual history” (1990) 5:6 International Journal of Geriatric Psychiatry 355.

[17]: Robert Katzman et al, Alzheimer’s disease: senile dementia and related disorders (NY: Raven Press, 1978) at 595.

[18]: Eric P Brass & Kathy E Sietsema, “Considerations in the Development of Drugs to Treat Sarcopenia” (2011) 59:3 Journal of the American Geriatrics Society 530.

[19]: Ibid at 531.

[20]: Supra note 12 at 116.

[21]: Alfonso J Cruz-Jentoft et al, “Sarcopenia: European consensus on definition and diagnosis” (2010) 39:4 Age and Ageing 412 (Abstract).

[22]: Roger A Fielding et al, “Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences” (2011)12:4 Journal of the American Medical Doctors Association [JAMDA] 249 (Abstract).

[23]: See Marco Brotto, “Lessons from the FNIH-NIA-FDA sarcopenia consensus summit” (2012) 9 IBMS BoneKEy 210.

[24]: Supra note 18 at 531-533.

[25]: Ibid at 533. See also Christopher J Evans et al, “Development of a New Patient-Reported Outcome Measure in Sarcopenia” (2011) 12:3 JAMDA 226.

[26]: Center for Drug Evaluation and Research, “Guidance for Industry – Qualification Process for Drug Development Tools,” FDA (October 2010) online: <http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM230597.pdf>.

[27]: 21 USC § 356(a)(1).

[28]: 21 CFR § 314.510.

[29]: Thomas R Fleming, “Surrogate Endpoints And FDA’s Accelerated Approval Process” (2005) 24:1 Health Affairs 67. See also Thomas R Fleming and David L DeMets, “Surrogate end points in clinical trials: are we being misled?” (1996) 125:7 Annals of Internal Medicine 605.

[30]: There may be other intellectual property issues implicated in this shift of paradigm in drug development and regulation, but they are beyond the scope of this article.

[31]: Meaning “self, one’s own” + “cell” + “toxin” + “condition of increase”.

[32]: Supra note 14 at 0463.

[33]: SENS Foundation, Annual Report 2011, online: <http://www.sens.org/sites/ srf.org/files/SENS%20Foundation%20 Annual%20Report%202011.pdf>.

First published as a regular column called In Perpetuity in Cryonics Magazine, March 2013

08. August 2016 · Comments Off on How Uniform Are The Uniform Anatomical Gift Acts? · Categories: Cryonics, Society


Thus begins a very important section of a very important piece of legislation. Except it isn’t actually legislation at all, though it does look the part. It is the Revised Uniform Anatomical Gift Act (2006) [“UAGA”]. UAGA is model legislation, and in that form it does not have the force of law.

The model act continues:

(a) An anatomical gift may be made to the following persons named in the document of gift:

(1) a hospital; accredited medical school, dental school, college or university; organ procurement organization; or other appropriate person, for research or education;

Crucially, this section tells us under what, if any, authority we may direct that a cryonics service provider take custody of our bodies after legal death. Whether on plain meaning, or act-specific definition, cryonics service providers are not hospitals, medical or dental schools, colleges or universities. In some circumstances, Alcor and/or Suspended Animation behave like organ procurement organizations — insofar as brains are organs — but that term is defined in UAGA so as to require designation by the Secretary of the US Department of Health and Human Services. Subsection 2 (not reproduced above) is specific to organ transplantation, and subsection 3 pertains to eye banks and tissue banks, neither of which are good “homes” for a cryonics service provider.

So, for the time being we are left with “or other appropriate person, for research or education.” It isn’t much — but it’s home, and on that point at least one court agrees, namely the Court of Appeals of Iowa in Alcor Life Extension Foundation v Richardson. [1] But wait — how does a court in Iowa even begin to consider the meaning and effect of UAGA if it isn’t really law? Well, because the Iowa Legislature looked at the model uniform act, decided it liked it (mostly), and made it into state law. In fact, the Iowa Legislature made some changes to the model, but it left in the “other appropriate person” clause, and that is very good, because when Alcor sued Orville Richardson’s brother and sister for custody of Orville’s body, the Court of Appeals of Iowa agreed that Alcor was an “appropriate person for research” for the purposes of Iowa’s UAGA. [2]

Thus, we can see how important these words are. As the name implies, UAGA is an attempt to promote uniformity in an area of law which could otherwise vary considerably from state to state, making the procurement and transfer of life-saving organs and other tissues for transplant very difficult. So the Uniform Law Commission [3] came along and drafted UAGA for enactment in all states. Of course, this process is voluntary on the part of the states, and does not require wholesale adoption of the model act without modification — and that is where potential for trouble creeps in. Human cryopreservation is obviously not the intended subject of the act; even generally, gifts for research and education are only a secondary focus. In most states (Arizona being a conspicuous exception) there is no cryonics lobbyist at the table when state legislators are deliberating whether and how to enact the newest incarnation of UAGA; hence, they are not thinking about us or our unique interests when they consider whether to pass the model act with the words “or other appropriate person, for research or education” intact.

Now, section 24 of UAGA does state that “[i]n applying and construing this uniform act, consideration must be given to the need to promote uniformity of the law with respect to its subject matter among states that enact it.” But of course, the force of that section depends on whether or not it was itself legislated with the rest of the Act. However, assuming it was, this provision still cannot outweigh clear evidence of a legislature’s intent to diverge from the model by removing or materially altering particular language. That is to say, if the “other appropriate person” clause is left out of one state’s enactment of UAGA, a court has no discretion to read it in. [4] Where the uniformity provision does help is if Alcor ever has to go to court again in a state with a UAGA substantially similar to Iowa’s — then the Iowa case should carry significant persuasive force. [5] Happily, a majority of states’ UAGAs contain the “other appropriate person” clause, unaltered. [6] A few others have adopted different language that is equally or maybe even more applicable to cryonics organizations [7], and two states may even provide additional points of entry for cryonics service providers. [8] However, nine states present problematic aberrations from the mold. In Oklahoma, the State Anatomical Board gets to designate who is an “other appropriate person.” [9] Likewise, the Virginia Transplant Council is in charge of authorizing “other appropriate persons” in Virginia [10], and in the District of Columbia this is the domain of the mayor. [11] The remaining six states lack the “other appropriate person” clause entirely, and any other equivalent entry point: these are California, Florida, Maryland, New York, Texas, and Washington. [12] It is a little surprising to see some current (and in Texas’ case, future [13]) hubs of cryonics activity on this list.

At this stage, I feel I should point out that anatomical gift legislation is only one mechanism for making legal provisions for transference of custody of one’s body after legal death. The other (arguably more traditional) method is the “final disposition of human remains” method. Thus, the mere fact that a state’s anatomical gift legislation does not permit donations to cryonics organizations doesn’t rule out  legally enforceable cryonics arrangements. The nine states mentioned above all have some statutory provision for the disposition of human remains route, though Florida stands out for lack of clarity. Maryland and Oklahoma both provide the right to direct the disposition of one’s body after death. [14] Written preferences are likewise binding in California, District of Columbia, New York, Texas, and Washington, which states also provide the right to designate a person who will supersede the spouse or next of kin’s default authority to control disposition (though they would be bound by the decedent’s written instructions in any case). [15] Virginia allows for designation in writing of a person who will control disposition (over a surviving spouse or other next of kin), but the relevant statute does not expressly state that the decedent’s instructions are binding — though it could be argued that it is implied.[16] Florida’s statutes are not explicit as to who controls the disposition of human remains after death, nor whether written preferences of the deceased are legally binding, though case law has generally supported this result. [17]

However, even if the nine states whose anatomical gift statutes apparently preclude donation to cryonics organizations still provide legally enforceable final disposition rights, mightn’t a document that uses language around “anatomical donations” for this second purpose present somewhat of a red herring? For example, Alcor’s success in the Richardson case relied in part on the fact that Iowa’s UAGA takes precedence over its final disposition provisions, which would have favoured Orville’s brother and sister to control disposition. [18] But when an anatomical gift under UAGA fails for lack of a valid donee, the gift doesn’t fail, but passes instead “to the appropriate procurement organization” (which would not include the cryonics service provider).[19] Would this aspect of UAGA prevail over the cryonicist’s clear intent, just because he or she used the words “anatomical donation”? This result seems inconceivably formalistic, but illustrates the (potential) problem with blending legal categories. On the other hand, because we cannot necessarily control which anatomical gift legislation will ultimately apply to us (as it will be the law of whichever jurisdiction we die in, whenever that happens to be), a hybrid, one-size-fits-most solution has clear utility.

As a Canadian, my interest in UAGA was actually initially focused north of the border. I noticed that Cryonics Institute’s standard issue emergency necklace has “UNIFORM ANATOMICAL GIFT ACT” on the back, and I wondered what Canadian medical personnel might make of that, since we have no such named legislation. However, the intent of CI’s “Uniform Donor Form” [20] is fairly clear, and the majority of Canadian provinces have broadly empowering legislation for making “human tissue gifts.” [21] This is especially good because English-Canadian common law never developed the deferential approach taken by US judges to decedents’ preferences for final disposition — such preferences were only ever considered morally binding on executors and next of kin, and not legally so. [22] However, Alberta’s Human Tissue and Organ Donation Act only permits body donations to university medical, dental or related health programs. [23] This limitation expressly refers to “a body donated under this Act” as opposed to “any tissue, organ or body donated under this Act,” so it could be argued that Alcor neuropatients may still be transferred using the anatomical gift mechanism — but this may not reflect the intent of legislature, and as such may not be a sustainable reading. Unfortunately, this would mean that Albertans (or at minimum, Albertan whole-body patients) are hit doubly — they have no legally binding mechanism for transfer of custody of their bodies to their cryonics organization under either the anatomical gift or final disposition route.

So, more than most, Albertan cryonicists might want to reconsider the wisdom of where they live. That said, while other readers may think themselves lucky to live in a state or province I didn’t mention, laws change [24], and I have just learned all-too-personally how many fifty states are to monitor. We must each be vigilant in ensuring our various cryonics legal documents are valid for their intended purposes.


1 785 NW (2d) 717 (Ill Ct App 2010).

2 Ibid at 725.

3 http://www.uniformlaws.org

4 UAGA’s choice of law provision (section 19) states that a document of anatomical gift will be valid if it is executed in accordance with either (i) the law of the forum (i.e. the UAGA where the document is sought to be used), (ii) the law of the state/country where it was executed, or (iii) the law of the state/country where the person was domiciled, had a place of residence or was a national when the document was executed. However, the interpretation of the document of gift is governed by the forum law.That is to say, a document of anatomical gift to a cryonics service provider which is formally valid in the forum by merit of its validity under the laws of the state/country where it was executed, etc., may yet be ineffective under the laws of the forum.

5 The Richardson decision also included a tentative, but nonetheless authoritative finding that Orville’s payment to Alcor to preserve his body, and less-than-perfectly-altruistic motives did not move the transaction outside the legal category of “gift.”  Again, this finding and the uniformity provision should go a long way to deciding the issue if it comes up again in another state.

6 For ease of reference: Alabama, Alaska, Arkansas, Arizona, Connecticut, Georgia, Hawaii, Idaho, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Massachusetts, Michigan, Mississippi, Missouri, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, North Carolina, North Dakota, Ohio, Oregon, Rhode Island, South Carolina, South Dakota, Tennessee, Utah, Vermont, West Virginia, Wisconsin, Wyoming.

7 Minnesota replaces “other appropriate person” with “non-profit organization in medical education or research.” Minn Stat § 525A.10. Delaware, Illinois, and Pennsylvania still use language from older incarnations of the UAGA, which lack “other appropriate person” but define “any bank or storage facility” in such a way that so long as the cryonics service provider is recognized as a permissible donee in its home state, it should qualify under the Delaware/Illinois/Pennsylvania statutes. 16 Del Code § 2712, 755 ILCS § 50/5-10, 20 Pa C S § 8612.

8 Alcor’s own lobbying efforts resulted in the inclusion of the comparatively broadly defined “procurement organization” in Arizona’s ARS §36-850; Missouri has provision for “cadaver procurement organization[s]”. Mo Rev Stat § 194.255.

9 63 OS §2200.11A.

10 Va Code § 32.1-291.11

11 DC Code §7-1531.10.

12 Cal Health & Safety Code § 7150.50; Fla Stat § 765.513; Md Code, Est & T §4-509; NY PBH Law §4302; Texas Health & Safety Code § 692A.011; RCW § 68.64.100.

13 Comfort, Texas is home to the Timeship project.

14 Md Code, Health §5-509; 21 OS § 1151.

15 Cal Health & Safety Code §7100.1; DC Code §3-413; NY PBH Law §4201.2(c); Texas Health & Safety Code § 711.002; RCW § 68.50.160.

16 Va Code §54.1-2825.

17 Fla Stat § 497.005(37) sets out an apparent order of priority in a definitions section, without elsewhere stating that that priority grants any particular rights; § 732.804 uses permissive language instead of imperative. See also Leadingham v. Wallace, 691 So (2d) 1162 (Fla 5th DCA 1997).

18 Supra note 1 at 727.

19 Uniform Anatomical Gift Act (2006), § 11(c)(4).

20 http://www.cryonics.org/documents/Uniform. html

21 These are largely derived from various iterations of the Uniform Human Tissue Gift Act proposed by the Uniform Law Conference of Canada.

22 Quebec and British Columbia are the only provinces which provide statutory rights to direct disposition of one’s own human remains: art 42 CCQ and Human Tissue Gift Act, RSBC 1996 c 211 s 4.

23 SA 2006 c H-14.5 s 3.

24 For example, the 2006 revision of UAGA was introduced in the Pennsylvania Legislature this year.

First published as a regular column called In Perpetuity in Cryonics Magazine, February 2013

06. January 2016 · Comments Off on Who speaks for the dead? · Categories: Cryonics, Society

Do the dead have rights, in the proper sense of the word? That is to say, when someone is obligated to do something with a dead person, like bury them, for whose benefit are they doing it? For the dead? Or for the living?

You might well ask, is this really important? In short, yes. The person to whom the obligation is owed is the person who may sue for enforcement of that right, and their identity may also determine the remedies which are available to them (be it money, compulsory performance of or abstinence from a particular act). So, the question of whose rights are engaged in dealing with the dead is fundamentally important from the cryonics patient advocate’s perspective.

An illustration: If you make a contract with someone, both of you intending that a substantial portion of what you have promised to do will only be done after (and in fact as a result of) your legal death, and vice versa that a substantial portion of what they have promised to do will likewise only be done after your legal death: who has promised what to whom?

While you remain alive, the answer seems quite obvious. But once you are dead, you are no longer a person. You, sadly, are not an entity recognized by law. You are your estate. Your estate has legal personality of a kind, but it is probably better to think of your estate as a medium. And, as such, it really isn’t about you anymore — it’s about your stuff, and who gets it. Yes, you can (and should, and hopefully do) have a will that references your cryonics arrangements, but practically speaking, the interest that your estate has in that contract you made for things to be done for you after you died, is the fact that something about that contract could result in more stuff for the estate’s beneficiaries. That’s really all the estate can care about, because the real, live person who was capable of having immaterial (or better still, “non-pecuniary”) interests in the contract is now gone.

But wait? How can the cryopreservation agreement (cat’s out of the bag — that contract was about cryonics after all) result in more stuff for the estate? Your cryonics service provider (CSP) didn’t promise to give anything, or pay anything. You, the patient promised to give something, and in fact cleverly entered into other contracts with other people to automatically transfer money to your CSP upon your legal death. So how could the cryopreservation agreement possibly represent a source of “stuff ” for the estate? Well, that’s because there were really two layers of promises — two sets of obligations in every contract. The top layer, or primary obligations, are what you actually bargained for. The secondary obligations are what the other party must do (or rather, pay) if they do not perform their primary obligations. These secondary obligations are the damages, and they are a part of the contract from the very beginning without anything being written about them.

So, the potential pecuniary ($) interest your estate has in the cryopreservation agreement, since your estate is just a medium that can only really have an interest in things and stuff, is in the failure of your CSP to do what it promised to do for you. And unfortunately for you, in cryonics there are no do-overs.

Hence why it is important to know who speaks for you when you are dead. The beneficiaries of your will, however friendly to your arrangements and well-intentioned they are, have no vested, personal, legal interest in the CSP’s performance of its primary obligations to you under the cryopreservation agreement. The executor of your will, on the other hand, has certain obligations to carry out promises made by you when you were alive, and (sometimes) to ensure that your body is dealt with as you directed by will or other instrument. The executor may even have an obligation to ensure that you remain interred as directed. But how long must they keep vigil? When they, too, are dead, does their executor now watch over the both of you? At a certain point (if not right away) this clearly becomes impossibly impractical. Alternately, if your CSP’s custody of your body was effected by a consent to body donation for research (which is the more robustly enforceable method, generally), even your executor has essentially no standing with respect to your body. And this is good, because above all else we trust that our CSPs want the same thing we want — and I have no reason to believe that is anything but true. But what if, someday down the road when your executor and next-of-kin are now in the dewar next to you, your CSP’s performance dips demonstrably below the threshold of “good faith best efforts”? Is there anyone who can claim authority to move you or to enforce performance of your CSP’s primary obligations under the cryopreservation agreement?

The above is not an exhaustive analysis by any measure. I write it hoping only that it will illustrate how peculiarly vulnerable cryonics patients are under the laws currently applying to them. What I plan to do with this column is explore intersections of law and cryonics & life extension (and there are many), and one theme I expect to visit frequently is cryonics patient advocacy. This is the issue of “who speaks for the dead” adverted to above, though in truth it starts long before legal death, and is more about how the dead or incapacitated can speak for themselves through legally recognized documentary evidence of their intentions: wills, trusts, powers of attorney (financial and health care), advance directives, consents to body donation, etc. However, all of these need agents to carry them out, and others still may seek to tear them down, so the more complex questions deal with how to build checks and balances into your supplementary cryonics documents and otherwise incentivize compliance of possible threats.

One specific topic I plan to look at soon: Just how uniform is the Uniform Anatomical Gift Act in its implementation by the various States? Are body donation consent forms executed under the authority of the UAGA enforceable outside America?

Another, somewhat related question: If a cryonicist executes a valid will in Oregon, moves to California, and dies there without executing a new will, but the original will does not comply with the formalities of execution applying in California, is the will valid — and if so, is it valid for all purposes, or only some? This is the domain of private international law, aka “conflict of laws,” which refers to how one legal jurisdiction deals with foreign legal elements: foreign parties, parties asking for application of foreign law, or foreign judgments. This is a particularly complicated area, but one which cannot be ignored, since so many cryonicists do not live in the same legal jurisdiction as their cryonics organization.

Another theme I will be exploring in this column is access to cryonics and other forms of life extension. In the case of cryonics, impediments to access can take the very blatant form of a law directly prohibiting it, or essential procedures thereof, or else operate indirectly, like mandatory autopsy provisions. Access to cryonics is also context-specific — taking on a very different meaning for someone diagnosed with a brain-threatening disorder, for instance. As such, the availability of legal assistance in dying is a topic which might be dealt with under this heading, and whether the practical benefits accruing to those patients outweighs the risks, both individually and to cryonics generally. How the law defines death, and public policy debates over whether to move to new definitions for reasons quite separate from cryonics, also fall neatly here.

Access to life extension, more generally, is also interesting to examine from a legal perspective. Are the current models of regulation applying to drug development sufficiently flexible to accommodate the advent of SENS-type rejuvenation therapies? One could say that cryonics aspires to being ordinary health care someday, at which time we can expect that it will be subject to some form of regulation. What should it look like? And how can cryonics organizations today best self-monitor and self-regulate to ease that eventual transition?

Finally, constitutional rights instruments have immense potential as tools for securing meaningful access to cryonics and other forms of life extension. However, the content and implementation of these fundamental rights documents vary throughout the world. Cryonics has fairly deep roots in America, but are we certain there is no better soil on Earth in which it might flourish?

All of the above areas of law overlap and interact, and there are other relevant ones that I have not mentioned (insurance law, notably), and no doubt a few I am not yet even aware of. I also plan to report on live cases of interest, as they arise.

One last, but significant point: due to variations between the laws of different jurisdictions (even within a single nation) you cannot simply assume that paperwork designed to work in one jurisdiction will work as intended in yours. You need to find a cryonics-friendly advisor where you live and have them review your cryonics arrangements, and revise them if necessary to work in your home jurisdiction. You are fighting for your life — you cannot afford to wear ill-fitting armor.

First published as a regular column called In Perpetuity in Cryonics Magazine, January 2013.

06. May 2015 · Comments Off on Cryonics as a measure of rationality? · Categories: Cryonics, Society

Most cryonics advocates are often frustrated by the amount irrationality, ignorance, and hostility when other people encounter the idea of human cryopreservation. It should not be surprising then that some of us have simply concluded that most people “just don’t get it.” Which raises an important question. Is making cryonics arrangements a strong measure of rationality? After all, a close examination of Alcor members indicates that most of them are highly educated, a disproportionate number of them have PhDs, and their backgrounds are often in fields where strong analytic skills are required; computer science, neuroscience, biochemistry, etc. Another indicator is that cryonics is relatively popular in communities with a high proportion of “nerds.” In fact, a number of “leaders” in the “rationality” community (Robin Hanson, Eliezer Yudkowsky) have cryonics arrangements and have made public arguments in favor of cryonics. In short, someone who has made cryonics arrangements is not prone to short term gratification and minimizes cognitive biases, one could argue.

The problem with this characterization of cryonics as a measure of rationality is that it does not explain why the overwhelming number of people who can be considered highly analytical or rational have not made cryonics arrangements. Many cryonicists are smart but most smart people are not cryonicists. To explain this we will have to look elsewhere.

The 18th century skeptic and analytical philosopher David Hume once wrote that “reason is a slave to the passions.” In the case of cryonics, no matter how smart a person is, if the person does not have a passion for life (and an aversion to death and aging) that person will not be primed for an enthusiastic personal endorsement of cryonics. Closely related to having a desire to live and to pursue life extension is a an optimistic temperament. A cryonicist is not necessarily “wildly” optimistic, but (s)he should at least think that life is worth living and not be prone to thinking about the future in dystopian terms. I am also inclined to think that such a person is prone to think “like an economist” (to use Bryan Caplan’s phrase). With this I mean that a person can think in a probabilistic manner, does not see the world as a “zero-sum game,” and sees developments like automation, computerisation and biotechnologies in a positive light.

Do these combined traits produce a favorable attitude towards cryonics? This still cannot be the complete story because the traits discussed so far are shared by many millions of people in the world and support for cryonics is extremely small. I want to single out two additional traits that are usually required to prime someone for cryonics. The person also needs to be a non-conformist of some kind. When cryonics is as small as it is, strongly endorsing cryonics makes someone stand out (to put it mildly). And this “standing out” is not comparable to just having a bizarre hobby or a strange sense of style. It can sometimes produce confusion or hostility in other people, which can turn even our most life-affirming friends and family into apologetic pro-mortalists.

The most important trait, in my opinion, and the one that really distinguishes the cryonicist from the non-cryonicist, is the ability to deal with vulnerability, uncertainty and the unknown — in some cases, to even welcome it. People who have been around in cryonics for awhile know that ultimately (that is, when you dig a little deeper) skeptics are really afraid to be resuscitated in a distant and unknown future. This should not be easily dismissed. Personal identity is not identical to the brain or the body (as a simplistic version of cryonics would have it) but extends to all the things and people that have become part of a person’s life. To many people, the cryonics proposal means  survival at the cost of losing everything that gives meaning to their lives.

If we look at the limited acceptance of cryonics from this perspective, does this inspire optimism in persuading more people? An immediate response would be negative because fundamental character traits are hard to change. Another approach, however, is to change the conceptualization and delivery of cryonics so that these fears are not triggered. In particular, it might serve a cryonics organization well to transition from an organization that just “stores” a human body or brain without specific resuscitation and reintegration scenarios to an organization that offers more comprehensive means of identity preservation. Such an organization puts a strong emphasis on the cryopreservation of families and friends. It will offer means of asset preservation and personal belongings. It develops specific resuscitation protocols which are updated and calibrated as our knowledge and technologies improve. And it makes serious efforts to provide a reintegration program which seeks to minimize adjustment to the time in which an individual is resuscitated.

Is endorsement of cryonics a measure of rationality? Yes, but without a desire to live, a reasonably optimistic attitude, an independent mindset, and, most of all, confidence in a cryonics organization to preserve all that is important to a person, being smart by itself is not going to do it.

This is a web-exclusive edition of the Quod incepimus conficiemus column that is published in Cryonics magazine but was omitted from the April 2015 issue.