22. November 2013 · Comments Off · Categories: Cryonics, Science

Can a case for cryonics be made on skeptical grounds? If we’d have to believe self-identified skeptics this is not only unlikely but cryonics, in fact, is a “logical” target for skeptical scrutiny. The most obvious approach for a skeptic is to demand “proof ” for cryonics. Upon closer inspection, this apparently reasonable demand is rather odd. Let’s start with a non-controversial definition of cryonics: cryonics is a form of critical care medicine that stabilizes critically ill patients at ultra-low temperatures to allow the patient to benefit from future advances in medicine. Now, what could this demand for “proof ” consist of? Does the cryonics advocate need to provide proof that future developments in medicine will indeed be capable of treating the patient? How could such a proof be even remotely possible? The most scientifically responsible answer would be to say “I don’t know.” And this answer reveals something important about cryonics. The decision to make cryonics arrangements is a form of decision making under uncertainty. Asking for “proof ” for such a decision makes little sense.

“Now wait a second,” someone might add. “It is correct that we do not have absolute knowledge about the future but, surely, science must have some kind of bearing on the question of whether it is rational to make cryonics arrangements?” This much can be admitted. And if we actually look at the science (or the history of medicine) that is relevant to make informed decisions about cryonics we find a number of encouraging observations. Medicine is increasingly recognizing the rather arbitrary nature of death. From the first clumsy attempts to restore circulation and breathing in patients with sudden circulatory arrest to today’s sophisticated protocols that employ aggressive CPR, hypothermia, and emergency cardiopulmonary bypass, our ability to resuscitate people from states in which they would have been previously been considered “dead” is moving towards ever-longer periods of circulatory arrest. In fact, in some advanced medical procedures, hypothermic circulatory arrest is deliberately induced. Such developments are backed up by histological research where it has been established that the neuroanatomical basis of identity does not just implode within 5 minutes of circulatory arrest. Observation of nature also supports the view that cessation of metabolism does not equal death.

“Well, I will admit that science and technology are constantly challenging our beliefs about death but the cryopreservation process itself causes irreparable injury to the patient,” is a common rejoinder to this argument. But this puts our skeptical friend in a rather incoherent position. Having first recognized that we cannot have absolute knowledge about the future capabilities of science, (s)he does not feel the slightest contradiction in claiming that certain kinds of damage cannot be repaired by any future medical technology.

Contemporary cryobiology now informs us that if cooling rates are not too rapid, ice formation does not explode cells from the inside, that ice-free cryopreservation (vitrification) is possible, and that mammalian brain slices can be vitrified and rewarmed with good ultrastructural preservation and viability. The situation is even better than what we might hope for because even if the damage associated with cryopreservation was substantial, it might still be possible to infer the original state from the damaged state. As we are increasingly recognizing in such diverse fields such as forensic science and paleogenetics, it is actually very, very hard to destroy information to such a degree that nothing meaningful can be inferred from what is left.

Then why has cryonics traditionally gotten such a poor reception by people who see themselves as “skeptics?” I suspect that some of it has to do with the fact that cryonics is traditionally associated with (religious) concepts such as immortality, very optimistic projections about the accelerating growth of science and technology, the technical feasibility of specific repair technologies (such as molecular nanotechnology), or mind uploading. But none of these ideas is an intrinsic part of the idea of cryonics. In its most basic form cryonics is just the recognition that what might be beyond the scope of contemporary medicine may be treatable in the future. No specific timeframe or technology is implied, or necessary. There are a lot of things that people in liquid nitrogen don’t have, but one thing they do have is time.

Contemporary science can weaken or strengthen the case for cryonics but it cannot tell with absolute certainty what our medical capabilities in the remote future will be. Saying that some kind of damage cannot be repaired by any future science is not an exercise of critical thinking but ultimately an appeal to authority. How many times do we have to revise our views about death and forecasting before we recognize that we are playing a fool’s game and that the proper, skeptical, approach is to refrain from dogmatic statements and naïve inductivism about such matters? The idea that, right here, right now, in 2013, we are at a time where we can make absolute certain claims about the future capabilities of science and technologies is preposterous. In absence of such knowledge we’d better refrain from doing harm and allow for the possibility that time will be on the side of cryonics patients.

————————————————————————————————————————————————-

A “Skeptic” on Cryonics: A Brief Case Study

Self-identified “skeptic” Dr. Michael Shermer wrote a column called “Nano Nonsense and Cryonics” (Scientific American, Sept. 2001) that includes a sensationalist description of cryonics with a number of factual errors:

“Cryonicists believe that people can be frozen immediately after death and reanimated later when the cure for what ailed them is found. To see the flaw in this system, thaw out a can of frozen strawberries. During freezing, the water within each cell expands, crystallizes, and ruptures the cell membranes. When defrosted, all the intracellular goo oozes out, turning your strawberries into runny mush. This is your brain on cryonics.”

Since the early days of cryonics, standard procedure has been to circulate a cryoprotectant through the circulatory system of the patient to reduce ice formation. In fact, when Shermer wrote his column the Alcor Life Extension Foundation had not only published a study that showed good histological preservation of the brain with a high concentration glycerol solution but had also introduced the newer technology of vitrification to eliminate ice formation completely. Shermer’s description of the effects of ice formation on cells is factually incorrect too, as anyone who would just casually study modern cryobiology could have discovered. Finally, one does not need to have a detailed understanding of cryonics protocols to realize that the fate of a thawed frozen brain has little to do with the resuscitation scenarios envisioned for molecular repair of the cryopreserved brain.

One can only speculate why Shermer did not inform himself about some basic facts about cryonics and cryobiology. One explanation is that there is no “cost” to being wrong about cryonics. If Shermer would make such careless statements about physics or chemistry his reputation would be much more likely to take a blow because there are numerous people who would identify these errors.

Shermer also ridicules the immortalist and transhumanist activists associated with cryonics:

“I want to believe the cryonicists. Really I do. I gave up on religion in college, but I often slip back into my former evangelical fervor, now directed toward the wonders of science and nature. But this is precisely why I’m skeptical. It is too much like religion: it promises everything, delivers nothing (but hope) and is based almost entirely on faith in the future.”

Such a perspective confuses the subculture of cryonics with the idea of cryonics itself. You can read religious aspirations into cryonics but you can also ignore them to look at the idea in its most charitable form.

Cryonics is an experimental medical procedure that allows people that cannot be sustained by contemporary medical technologies to reach a time when a treatment for their condition may be available. Such decision making under uncertainty has nothing to do with “faith” and “hope” but requires that we update our probabilities based on the available evidence from fields such as neuroscience, cryobiology, and molecular nanotechnology. While Shermer has later (rather unsuccessfully) attempted to qualify the statements made in his original article, his column is rather representative of how many critics of cryonics operate; mischaracterize its premises and procedures, avoid a discussion of the technical feasibility of molecular repair, and change the subject to psychological and philosophical issues.

Originally published as a column (Quod incepimus conficiemus) in Cryonics magazine September 2013

05. October 2013 · Comments Off · Categories: Science, Society

A friend of mine in the life extension movement who is approaching age 65 once lamented that he might be part of the last generation that will not be able to take advantage of the rejuvenation biotechnologies that become available to the next generation. I wish I could believe him because it means that I may still be in time! Unfortunately, interest in anti-aging research and cryonics is rather low (to put it mildly), even among baby boomers who one might expect to be painfully aware of the aging process. It is rather disturbing to me that the aging process itself is not being identified as a source of misery, disease, separation, and oblivion. Then again, perhaps I am just too impatient and unable to see the larger picture.

The practical production of liquid nitrogen from liquefied air was first achieved by Carl von Linde in 1905, although liquid nitrogen only became widely available commercially after World War II. The idea of cryonics was introduced to the general public in the mid-1960s. Since liquid nitrogen (or liquid helium) is an essential requirement for human cryopreservation it is interesting to recognize that there was only a difference of roughly 20 years between cryonics being technically possible and the first efforts to practice cryonics. Is this an outrageously long delay? I doubt anyone would argue this.

Similarly, while the idea of rejuvenation has always appealed to humans (think about Countess Elizabeth Bathory), I doubt anyone can credibly claim that there has been a long delay between our recognition of biological senescence and the desire to see aging as a biotechnological challenge to overcome. While there is no massive global movement to fight aging yet, the desire to conquer aging is as old as the exposition of (secular) modern evolutionary biology
itself. Are we too impatient?

What is disappointing, however, is the widespread passive acceptance of aging and death by the majority of people. Thinking about this issue, it struck me that until recently our (educational) institutions and research programs were shaped by generations that were perhaps eminently amenable to accepting the inevitability of aging. Expecting these institutions and research programs to change their objectives overnight may not be completely realistic. It is undeniable, however, that the idea that aging is not something that is to be passively accepted but something that can be stopped and reversed is gradually winning more converts.

I suspect this observation will not provide much solace for my aging friend. But one of the nice features of cryonics is that it is possible to benefit from future rejuvenation technologies regardless of whether one happens to live to the time when such technologies become available. In fact, for some people that might be one of the most appealing reasons to make cryonics arrangements. Case in point, in my own situation I am not so much scared of death as I am fascinated by the idea of seeing the aging process reversed, not just for myself but for others, too. I cannot think of a greater human achievement than the introduction of effective, evidence-based, rejuvenation.

I am comfortable with the idea that I may not live to see rejuvenation biotechnologies becoming available before I am cryopreserved, provided I am able to take advantage of them later. Of course, I’d prefer to be there (without interruption!) when it happens. People may have different reasons to desire cryonics—we need to recognize this diversity of motives instead of just trying to “sell” the one reason that is important to us. Then perhaps, maybe, we can accelerate the identification of aging as a condition to be stopped.

Originally published as a column (Quod incepimus conficiemus) in Cryonics magazine August 2013

04. October 2013 · Comments Off · Categories: Cryonics, Science

The goal of any credible cryonics organization is to develop reversible cryopreservation to avoid passing on problems with the cryopreservation process itself to the next generation. While there is a lot of recognition for the need to eliminate cryoprotectant toxicity, it is rather obvious that it will not be possible to restore integrated function in a fractured brain.

The 2011 3rd Quarter issue of Cryonics magazine features a comprehensive update on intermediate temperature storage (ITS) by Dr. Brian Wowk. This article contains an important observation:

“Acoustic events consistent with fracturing were found to be universal during cooling through the cryogenic temperature range. They occurred whether patients were frozen or vitrified. If cryoprotection is good, they typically begin below the glass transition temperature (-123°C for M22 vitrification solution). If cryoprotective perfusion does not go well, then fracturing events begin at temperatures as warm as -90°C. Higher fracturing temperatures are believed to occur when tissue freezes instead of vitrifies because freezing increases the glass transition temperature of solution between ice crystals. The temperature at which fractures begin is therefore believed to be a surrogate measure of goodness of cryoprotection, with lower temperatures being better.”

This is an important observation because one of the arguments that is still being made against intermediate temperature storage is that Alcor routinely records fracturing events above the nominal glass transition temperature (Tg) of the vitrification solution. But if we recognize that such events can be (partly) attributed to ice formation due to ischemia-induced perfusion impairment it should be obvious that the recording of fracturing events above Tg as such cannot be an argument against ITS. After all, we also do not argue against the use of vitrification solutions because ice formation will still occur in ischemic patients that are perfused with vitrification solutions. Because cryonics patients almost invariably suffer some degree of ischemia prior to cryoprotective perfusion and cryopreservation, our knowledge about fracturing events in “ideal” human cases remains incomplete.

Hugh Hixon has developed a “crackphone” to detect acoustic events that are presumed to reflect fracturing events. A preliminary survey of the data reveals, roughly, that the first temperature at which cracking events are recorded is lower for the newer generation of vitrification solutions than for the older glycerol solutions. Does this mean that fracturing occurs at lower temperatures in “vitrified” patients? “The lowest first fracturing event recorded at Alcor was at a temperature of -134°C for M22.”

Is this what we can expect for M22 for all patients, or was this an “ideal” case, too? Would -130°C be a safe storage temperature? Does molecular-scale ice nucleation, as distinct from ice growth, constitute damage? Despite all the articles and discussions that have been devoted to the topic of intermediate temperature storage, we do not seem to know much yet about fracturing in (large) tissues that are well equilibrated with a vitrification solution and subjected to a responsible cooling protocol. While the crackphone data seem to support the use of the newer vitrification solutions for reducing fracturing, controlled studies of fracturing in vitrified tissues will need to be conducted in a lab to really understand what we can expect under ideal (non-ischemic) circumstances.

Originally published as a column (Quod incepimus conficiemus) in Cryonics magazine July 2013

04. October 2013 · Comments Off · Categories: Cryonics

Since I have been involved in the field of cryonics I have encountered two distinct views on the marketing of cryonics. One view holds that cryonics is characterized by a disproportional involvement of scientists, intellectuals, and people with computer backgrounds who are totally unequipped to sell the idea to the larger masses. The marketing of cryonics should be done by people with a “business” or “marketing” background.

The other view is that people who expect a lot from marketing of cryonics are blind to the most obvious fact about our field. Most people reject cryonics and don’t want it. No sane business would spend vast amounts of time and money on a product or service that people don’t want.

While I am personally more sympathetic to the latter perspective, I suspect that a rather obvious point is being overlooked. What seems to matter a great deal is how cryonics is conceptualized and “sold” to the general public. Let me illustrate this by contrasting two really different ways of talking about cryonics. I am purposely simplifying things here to get the point across.

1. The belief in a “soul” (or dualism) is nonsense. There is nothing in our understanding of the laws of physics that prohibits the manipulation of matter at the molecular level and extremely long lives will be possible, even for people considered “dead” today. Technology is accelerating towards the Singularity. Most likely, cryopreserved people will be resuscitated as substrate-independent minds. Cryonics is part of the broader “immortalist” and “transhumanist” movements. Not all people agree with us and we need to identify the biases that give rise to these attitudes so we can change their minds. If you are concerned about resuscitation in a different and strange world, you need to toughen up.

2. Current developments in science and medicine increasingly throw doubts on the idea of “death” as a single and uniform event. We can stabilize people at ultra-low temperatures to allow them to benefit from future medical developments. Cryonics is a logical extension of other medical procedures in which people are stabilized for further treatment. The pace of technological progress may not be linear but assuming complete scientific and technological stasis is not reasonable either. Cryonics raises a lot of concerns for many people. We have to address these concerns and calibrate our message to show that cryonics is not something threatening but something aimed at preserving lives and keeping people together.

Now, think about these different ways of conceptualizing cryonics from the perspective of marketing. It seems to me that the first perspective is not only extraordinary difficult to sell but that the most proper expectation here would be more akin to damage control. If you are frustrated about the fact that you are always discussing “something else” instead of cryonics there is a good chance that this is the result of either a lack of restraint in promoting other ideas you care about under the rubric of cryonics or that the person in question has read just too many popular accounts about cryonics that discuss the Singularity, immortality, mind uploading, or chopping off heads. As much as I hate to admit it, some of the bad PR surrounding cryonics is self-inflicted.

If anyone would ask me today if successful marketing of cryonics is possible I would answer that this really depends on whether we are trying to sell a complete worldview that most people seem to reject or whether we are trying to connect to the rest of us with a proposal to update our current views on what it means to practice critical care medicine and end-of-life care.

Originally published as a column (Quod incepimus conficiemus) in Cryonics magazine, June, 2013

04. October 2013 · Comments Off · Categories: Cryonics, Neuroscience

A major obstacle to strengthening the case for cryonics is the perception that meaningful research aimed at resuscitation of cryonics patients cannot be done today. Attempts to be more specific than evoking the need for a technology that can manipulate matter at the molecular level are considered to be vague and unproductive. Clearly, such a stance is an open invitation for skeptics to claim that cryonics advocates have not much more to offer than hope and optimism. Nothing could be further from the truth. Not only is there a lot of relevant empirical research that can be conducted today, a focused investigation into the technical and logistical challenges of resuscitation can also define cryonics research priorities and refine the stabilization and cryopreservation procedures that we use today.

The first thing that needs to be recognized is that if we want to say something specific about the nature and limits of repair we need to be able to characterize the damage in detail. There has been a lot of general discussion of damage but there have been few writers that have systematically characterized the forms of damage that can occur prior to and/or during cryopreservation and then linked those forms of damage to contemporary or envisioned repair strategies. A notable exception is the 1991 article “‘Realistic’ Scenario for Nanotechnological Repair of the Frozen Human Brain” where the individual forms of mechanical and biochemical damage (ice formation, protein denaturation, osmotic damage etc.) are catalogued and repair strategies are discussed in biological terms.

Describing the various forms of damage at such a detailed level provides a meaningful context within which to discuss the technical feasibility of cryonics in rather specific terms, too. If someone would claim that cryonics is hopeless because of the “toxicity” of the vitrification agents we can ask for more specifics about what kind of biochemical damage is being alleged and why such alterations irreversibly erase identity-critical information.

Even when it is admitted that theoretical and empirical investigations into damage associated with (crude) cryonics technologies is possible it surely would be preposterous, wouldn’t it, to claim that repair of the damage itself can be done today. Well, not quite. Granted, we do not have the biological or mechanical cell repair technologies that would be required for repair of the brain at the molecular level but we can simulate a specific kind of damage (ice formation, ischemia) and create three dimensional neural wiring maps that can be compared to controls. Often this is not even necessary because we understand the universal language of biology and, for example, if we observe a ruptured cell membrane wall we know how it is supposed to look.

From here it is a short step to what I would call “reconstructive connectomics,” a sub-discipline of the field of connectomics that studies pathological changes of neural connections in the brain with the aim of in silico repair. Computational limitations currently constrain the scale and complexity at which we can do these reconstructions but it is not necessary to do reconstructive connectomics in a human-sized brain to obtain a much greater understanding of the mechanisms of damage, the type of repair required, and the empirical content of concepts like information-theoretic death.

It is important to point out here that the idea that resuscitation research can start today does not require taking sides in debates about the relative merits and limitations of biological versus mechanical cell repair technologies. The primary objective here is to show that meaningful resuscitation research can be done today and that the absence of such research only provides our critics easy targets.

Originally published as a column (Quod incepimus conficiemus) in Cryonics magazine, May, 2013

03. October 2013 · Comments Off · Categories: Cryonics

In a previous column called “Iatrogenesis and Cryonics” I observed that cryonics is uniquely vulnerable to iatrogenic injury because the objectives of individual cryonics procedures (such as stabilization) are not clearly defined and due to the lack of obvious feedback that a low temperature stabilization procedure entails. This does not mean that cryonics advocates have not thought about how to look at the overall quality of a cryonics case. On the most general level we can evaluate a cryonics case by looking at the degree to which the cryonics stabilization procedure itself adds additional injury to the patient. This is important because critics of cryonics are usually more skeptical about the effects of stabilizing the patient at cryogenic temperatures than about the idea that a person who is considered terminally ill today may not be considered terminally ill in the future. The idea that the cryonics procedure itself does not add additional injury to the patient also ties in with the idea that one of the most important mandates of medicine is to do no harm.

What can a credible cryonics organization do to move its procedures in the direction of reversibility? At the most general level it can reflect this by formally recognizing the goal of developing human cryopreservation technologies that are injury-free. In terms of a research objective, this means that it should aim for human suspended animation. The idea of reversible human cryopreservation is straightforward and easy to communicate. In fact, most laypeople who first hear about cryonics intuitively grasp this point. It also provides a useful benchmark to assess the degree of technological progress at a cryonics organization and evaluate the performance of a cryonics organization in cryopreserving humans.

But how can the concept of reversibility be applied to a cryonics organization that has not yet perfected reversible human cryopreservation? In this case one can still ask how far we can push the goal of reversibility. This raises another challenge. How can we know to what point our procedures are still reversible if we do not actually reverse them? For starters, we can look at the limits of conventional medicine (hypothermic circulatory arrest) and ensure that our procedures conform to the physiological requirements of these procedures. Another (complementary) approach is to define reversibility as maintaining viability of the brain and collect data that will provide us with an answer regarding how well we have achieved this objective.

As I write this, our understanding is that, under ideal circumstances, we can keep the brain viable up to at least the early stages of cryoprotective perfusion (which is conducted around 0° Celsius). It would be desirable to have a better empirical understanding of this, and one approach would be to take a very small, microliter brain sample of a patient (an established harmless medical procedure) and subject it to a variety of viability assays (such as the K+/Na+ ratio). A fruitful research objective would be to achieve loading and unloading of a vitrifiable concentration of cryoprotectant in the brain and recover organized electrical activity (EEG) in a
suitable animal model and then modify this protocol for human cases. If we achieve this, viability of the brain may be retained during the descent to cryogenic temperatures.

Currently the “descent to cryogenic temperatures” is not a completely innocuous step because thermal stress-induced fracturing can still produce mechanical damage. To eliminate this form of damage and transform the challenge of reversible human cryopreservation into a biochemical problem, intermediate temperature storage appears to be a requirement.

Originally published as a column (Quod incepimus conficiemus) in Cryonics magazine, March, 2013

29. April 2013 · Comments Off · Categories: Cryonics, Science, Society

On Sunday May 12, 2013, the Institute for Evidence Based Cryonics will organize a symposium about the resuscitation and reintegration of cryonics patients in Portland, Oregon. To our knowledge, this is the first public meeting exclusively concerned with the repair, resuscitation, and reintegration of cryonics patients.

The symposium is being held at The Cleaners at Ace Hotel (The Cleaners at Ace Hotel 403 SW 10TH AVE, 97205) in downtown Portland, Oregon from 10:00 am to 07:00 pm.

Admission is free. Registration for the event is possible at the event Facebook page.

On Saturday evening, the day prior to the symposium, Aubrey de Grey and Max More will be speaking about rejuvenation biotechnologies and cryonics at the Paragon Restaurant & Bar in Portland, Oregon.

Admission for this event is free and registration for this event is possible on the event Facebook page, too.

The current line-up of speakers is as follows (the exact schedule will be announced soon):
BEN BEST – EFFECTS OF TEMPERATURE ON PRESERVATION AND RESTORATION OF CRYONICS PATIENTS

Macromolecular temperature is a quantification of atomic-level molecular motion. The ability to maintain and reconstruct cryonics patients could be critically dependent on low temperature atomic/molecular motion and on the ability to operate nanomachines at cryogenic temperatures. Possible problems and solutions will be discussed.

Bio: Ben Best was President of the Cryonics Society of Canada for about a decade, after which he was President of the Cryonics Institute for nearly a decade. He is currently Director of Research Oversight for the Life Extension Foundation. The cryonics section of his website is one of the best sources of information about the science behind cryonics available on the internet ( www.benbest.com/cryonics/cryonics.html )

CHANA DE WOLF – RECONSTRUCTIVE CONNECTOMICS

Complete preservation of the “connectome” should be sufficient for meaningful resuscitation attempts of cryonics patients but it may not be necessary. As long as the original connectome can be inferred from what is preserved, damage associated with cerebral ischemia or suboptimal cryonics technologies do not necessarily exclude future resuscitation. In this presentation I will present a general framework for reconstructive connectomics and explore theoretical and experimental research directions for reconstructing damaged and altered connectomes.

Bio: Chana de Wolf lives in Portland, Oregon, where she works as a business manager and biomedical researcher. She holds a B.S. in Experimental Psychology (2001), an M.S. in Cognition and Neuroscience (2003), and has extensive management and laboratory experience. She has several years of experience working as a research assistant in a variety of laboratory environments, and has taught college-level courses in neuroscience lab methods and biology. She is a Director and researcher for Advanced Neural Biosciences. Chana joined as a member of the Alcor Life Extension Foundation in 2007 where she also worked as a Research Associate at Alcor to help build a sustainable, multi-faceted cryonics research program

RANDAL KOENE – BRAIN EMULATION AND NEUROPROSTHETICS: A SYSTEM OF FUNCTIONS TO BE SUSTAINED

Being, now or following revival from cryopreservation, ultimately depends on one’s ability to experience and to do so in the manner that is characteristic of one’s individual mind. Recently, it has become possible to address this problem in a concrete and systematic manner, largely due to rapid advances in computational neuroscience and data acquisition, both structurally (the popular field of “connectomics”) and functionally (brain activity mapping). The process of personal experience – like any process – involves some mechanisms operating at a given time under the influence of an environment state, a state that can include sensory input and functional “memory” established as a result of prior conditions. An emulation or prosthesis is then the attempt to replace a system of processing with an equivalent set of mechanisms that carry out the same processing within established success criteria. The engineering approach to understanding a system sufficiently that it can be emulated or replaced by prostheses is known as system identification. I will describe how system identification may be feasibly carried out for an individual human brain, and how constraints and requirements can be learned through projects with iterative improvements. I will present the projects that are underway to develop neuroscience tools with which successful system identification may be accomplished.

Bio: Dr. Randal A. Koene is CEO and Founder of the not-for-profit science foundation Carboncopies.org as well as the neural interfaces company NeuraLink Co. Dr. Koene is Science Director of the 2045 Initiative and a scientific board member in several neurotechnology companies and organizations.

MAX MORE – MAXIMIZING REVIVAL PROBABILITY: PRESERVATION, RECORDING, INTERPOLATION, AND RECONSTRUCTION

The proper ultimate goal of cryonics is reversible suspended animation. While we should continually strive for that goal, we do not know if or when it will be fully achieved. Until then, we must grapple with the probability that cryopreservation will in itself not fully preserve personal identity critical information. A revived individual may be missing pieces of his or her life, or some of the existing pieces may be fuzzier than they were before clinical death. It may be feasible to fill in the gaps and to sharpen the focus by feeding into the repair and revival process biographical information with a high degree of resolution. That information may also serve to validate the accuracy of a reconstructed connectome. Up to the present, cryonics organizations have offered minimal storage of personal-identity relevant information. In this talk, I will consider ways in which members of cryonics organizations could use the emerging tools and technologies associated with the “Quantified Self” concept to capture and record detailed biographical information, and how cryonics organizations could assist with this and convey the resulting data to a future capable of repairing and resuscitating cryonics patients.

Bio: Max More is the President & Chief Executive Officer of the Alcor Life Extension Foundation. More has a degree in Philosophy, Politics, and Economics from St. Anne’s College, Oxford University (1984-87). He was awarded a Dean’s Fellowship in Philosophy in 1987 by the University of Southern California. He studied and taught philosophy at USC with an emphasis on philosophy of mind, ethics, and personal identity, completing his Ph.D. in 1995, with a dissertation that examined issues including the nature of death, and what it is about each individual that continues despite great change over time.

KEEGAN MACINTOSH – REINTEGRATION OF CRYONICS PATIENTS: LEGAL AND LOGISTICAL CONSIDERATIONS

Given the host of complicated problems to be solved before resuscitation of cryonics patients is possible, it is easy to leave planning for their reintegration for another day. However, this assumes that there is nothing particularly important that can be done about reintegration prior to patient cryopreservation, which might be impossible, or at least far more difficult afterward. It also underestimates the impact that fear of dis-integration has on individuals’ decisions on whether to sign up for cryonics, which might be alleviated if we had more concrete plans for reintegration, with presently actionable components. In this talk, Keegan Macintosh will survey several aspects of cryonics patient reintegration, both legal and logistical, that can be tangibly worked on today.

Bio: Keegan Macintosh received his J.D. from the University of British Columbia in 2012, and is Executive Director of the Lifespan Society of British Columbia, a non-profit organization established to educate the public on life extension strategies and protect access to potentially life-saving technologies. Keegan is a board member of the Institute for Evidence Based Cryonics, as well as the Cryonics Society of Canada.

ASCHWIN DE WOLF – CRYONICS WITHOUT REPAIR

Cryonics aims to stabilize critically ill patients at low temperatures in anticipation of future medical treatment. While the concept of cell repair is often associated with the practice of cryonics, it is not an intrinsic element of the procedure. Advanced cryonics technologies will permit reversible cryopreservation of the patient. If human suspended animation would be achieved cryonics would solely involve future treatment of the patient’s disease and its underlying pathologies. In this talk I will discuss why reversible cryopreservation is important and which technical obstacles need to be overcome to make it a reality.

Bio: Aschwin is a Director and researcher for Advanced Neural Biosciences, the editor of Cryonics magazine, serves as a consultant for a number of cryonics organizations, and has published technical articles on various cryonics topics.

25. April 2013 · Comments Off · Categories: Arts & Living, Cryonics, Society

Anyone who has ever reflected on the fragility of human life and the seemingly inevitable rise and fall of complex societies cannot fail to be concerned about the fate of patients in cryopreservation. Cryonics organizations have learned from the early days and abandoned the practice of accepting patients without complete prepayment – a practice that almost invariably guarantees a tragic loss of life when family members or the cryonics organization can no longer afford to care for them. Alcor has given a lot of thought to the financial and legal requirements of keeping patients in cryopreservation but it is understandable that people question the prospect of cryonics patients making it to the time where a suitable treatment of their disease will be available.

This challenge is further exacerbated by the fact that cryonics patients do not have the legal standing that ordinary human beings (or patients) enjoy. If the media revealed blatant incompetence in a local hospital, it would be inconceivable that the existing patients would be abandoned and left to die. In cryonics there is a far greater risk of abandoning both the organization and the patients, despite the safeguards that some cryonics organizations have made to separate the organization from the maintenance of patients. In fact, the most rabid opponents of cryonics have little patience for the idea that abandoning cryonics patients could one day be considered one of the most tragic events in the history of medicine.

The first step to protect cryonics patients is to strengthen your cryonics organization and the legal and logistical structures that have been erected to keep them in cryopreservation. But almost just as important is to give people who have not made cryonics arrangements themselves reasons to protect them. In the case of surviving family members that is usually not a challenge but time may eventually pass the direct descendants of those people by as well. One important practice that can be strengthened is to give these people a face. Cryopreserved persons are not just a homogenous group of anonymous people (unless they chose to be so!) but are our friends, family members, and patients who would like their story to be told.

Fortunately, in the age of the internet this has become a lot easier. Social networking websites like Facebook retain the profiles of deceased and cryopreserved persons unless the family requests removal. Cryonics organizations themselves can offer opportunities for members, friends, and family members to maintain their presence online. Last but not least, there are a lot more people who support cryonics and protection of cryonics patients than people who have made actual cryonics arrangements and these people can be involved and organized as well. As evidenced on a daily basis, you do not have to benefit yourself to support a cause. Cryonics is not just an individual seeking an experimental procedure but part of a broader social movement that hopes to update the way we think about death. In fact, Alcor now offers Associate Membership for those who want to support our mission but do not desire to make arrangement themselves, or not yet.

It is easier to dispose of people who are nameless, who have been removed from the social fabric of life, and who are only perceived as anonymous vehicles of an “erroneous” idea. We cannot decide that resuscitation will work but we can decide to keep their memories alive and personalities present to help them reach that opportunity.

Originally published as a column (Quod incepimus conficiemus) in Cryonics magazine, April, 2013

22. March 2013 · Comments Off · Categories: Cryonics, Health

Wikipedia tells us that iatrogenesis is “an inadvertent adverse effect or complication resulting from medical treatment or advice…” The key word in this definition is “inadvertent.” For example, a doctor who exposes a patient to a bacterial infection by accidentally donning non-surgical gloves is an example of iatrogenesis. A doctor who deliberately administers a lethal dose of an anesthetic is not. One source of iatrogenesis is adverse effects.

A defining characteristic of contemporary human cryopreservation is that it is not possible to stabilize patients at very low temperatures without producing additional damage. Forms of injury in cryonics include ice formation, cryoprotectant toxicity, and fracturing. The relevance of the concept of iatrogenic diseases to cryonics was first recognized by Thomas Donaldson in his article “Neural Archeology” (Cryonics, February 1987). What sets cryonics apart is that cost-benefit analysis favors cryopreservation in a sense not encountered in ordinary medicine. Cryonics is the last hope to save the life of the patient and the alternative course of action is irreversible death.

One could say that the adverse effects of cryonics are a form iatrogenic injury, but since the major adverse effects of cryonics are known and recognized, cryonics cannot be brought under the rubric of iatrogenesis. But just as medical researchers and pharmaceutical companies allocate resources to developing drugs with fewer or less serious adverse effects, Alcor aims to improve procedures to eliminate these forms of injury. Examples include vitrification agents to eliminate ice formation, intermediate temperature storage to eliminate (or reduce) fracturing, rapid cooling devices to decrease ischemic injury, etc. The ultimate goal is to create a low temperature stabilization procedure that does not induce any additional injury. Such an achievement would constitute true human suspended animation. We would not be able to treat the disease of the patient yet, but could induce biostasis and reverse it without any adverse effects.

There is narrower application of the idea of iatrogenic injury to specific elements of cryonics procedures. For example, if a multiperson team is present at the bedside with a portable ice bath, ice, and a functioning chest compression device, but later analysis of the temperature data reveals negligible cooling, negligence or error may be involved. This is a rather dramatic example and most examples of non-intrinsic iatrogenic injury in cryonics have a subtler character. Cryonics is particularly vulnerable to iatrogenic injury because of the lack of clear objectives for the individual procedures and the lack of
consistent and comprehensive monitoring.

A rather disappointing excuse for permitting additional injury is the view that since cryonics patients will require advanced repair technologies in the future anyway it is not of great importance to minimize adverse effects of the cryonics procedures themselves. Such an attitude encourages recklessness, makes a mockery of the idea of human cryopreservation as medicine, and is not the kind of cryonics that is going to win over scientists, medical professionals, and the educated public. We do not know at which point injury translates into irreversible identity destruction, but we do know that the closer our procedures conform to reversible human suspended animation the less likely it is that we are wandering into that territory.

Cryonics cannot be disqualified merely because it introduces adverse effects. We know it does and we have no choice but to accept this. But an aggressive pursuit of human suspended animation will eliminate these adverse effects step-by-step so a future doctor will no longer need to worry about the effects of the cryonics procedure itself.

Originally published as a column (Quod incepimus conficiemus) in Cryonics magazine, February, 2013

14. January 2013 · Comments Off · Categories: Cryonics

I moved to Florida a number of months ago, but I am only now starting a cryonics group in the Broward County, Florida area. As a first event I have booked a table at the Peking Tokyo Buffet restaurant on 1219 South Federal Hwy, Deerfield Beach, Florida for dinner in the early evening (7 P.M. to 9 P.M.) on Thursday, January 24th. All those interested in cryonics in Broward county and adjoining areas are invited to attend.

This will be the first meeting of this group so the main goal will be to meet other cryonicists or cryonics-interested people in the South Florida area. All-you-can-eat buffet with a wide selection of foods for only $10.95, but no purchase or meal is required for those who simply want to socialize and discuss cryonics while others eat. Drop-in any time between 7 P.M. and 9 P.M., but closer to 7 P.M. would be preferred. Use exit 41 from I95, drive East along SW (becomes SE at Dixie) 10th Street, and turn right on Federal Highway (US Route 1) to reach the Peking Tokyo Buffet in Deerfield Beach. Anyone interested in cryonics is welcome to attend.

I have been phoning cryonicists in the area and quite a few seem certain to attend. I have also started groups on Facebook and Meetup for this purpose, which I invite others to join, but don’t get the wrong impression that the buffet event on Thursday, January 24th is going to be as poorly attended as the Facebook or Meetup groups might make you imagine.

Here is the Facebook group and event:

http://www.facebook.com/groups/cryonics.boward/

http://www.facebook.com/events/522418457791831/

Here is the Meetup group and event:

http://www.meetup.com/Cryonics-Meetup-of-Broward-County-Florida/

http://www.meetup.com/Cryonics-Meetup-of-Broward-County-Florida/events/98480242/

For those wondering about my move to South Florida, here is some background information.