Patrick Millard's cryonics photography

Patrick Millard is a Michigan based artist who works with different media including photography, painting, mixed media, sound, and installation. He currently works as an adjunct professor of photography at Grand Valley State University and Grand Rapids Community College and is a photography instructor at the Urban Institute for Contemporary Arts in Grand Rapids.

One of his current photography projects involves cryonics and he hopes to visit other cryonics organizations to continue the project:

Cryonics first began in the late 1960’s as a way to preserve the legally dead with the hope that they will one day be brought back through new technologies with revived youth and health.  Patients are cooled to a very low temperature [below -312ºF, -196ºC] with liquid nitrogen and cryopreserved at that temperature in what are called cryostats. It is inside these Hard Shell, Soft Vacuum [HSSV], or Steel Dewar in the case of Alcor, cryostats that the patient will wait out the time necessary to create life extending and reparative medical advances which will allow the rejuvenation and life extension that is desired.  The hope is that one day future medicine will not only cure disease, aging, and death for those still living,but also provide the opportunity for those who have been in cryostasis to be brought back to a life and body that has been returned to youth and happiness.

Visit the artist’s website.

The red blood cell as a model for cryoprotectant toxicity

Various approaches are available to investigate cryoprotectant toxicity, ranging from theoretical work in organic chemistry to  cryopreservation of complete animals. Because resuscitation of complex organisms after cryopreservation is not feasible at the moment, such investigations need to be confined to viability assays of individual cells and tissues or ultrastructural  studies.

One simple model that allows for “high throughput” investigations of cryoprotectant toxicity are red blood cells (erythrocytes). Although the toxic effects of various cryoprotective agents may differ between red blood cells, other cells, and organized tissues, positive results in a red blood cell model can be considered the first experimental hurdle that needs to be cleared before the agent is considered for testing in other models.  Because red blood cells are widely available for research, this model eliminates the need for animal experiments for initial studies. It also allows researchers to investigate human cells. Other advantages include the reduced complexity of the model  (packed red blood cells can be obtained as an off-the-shelf product) and lower costs.

Red bloods cells can be subjected to a number of different tests after exposing them to  a cryoprotective agent. The most basic test is gross observation of the red blood cells in a cryoprotectant solution. When high concentrations of a cryoprotectant are used (such as in vitrification), a stepwise approach is necessary to avoid  osmotic  injury. If a cryoprotectant solution is extremely toxic rapid hemolysis will follow, which often can be observed by a noticeable change of the color of the solution,  red cell debris sinking to the bottom of the test tube, or negligible difference between the pellet (if there is one at all) and the supernatant after centrifugation. But if the researcher is interested in agents that are not extremely toxic, or wants to compare variants of  similar agents with each other, quantitative methods and detailed observations are required using respectively spectrophotometry and light microscopy.

In 1996, Bakaltcheva et al. used the red blood cell model for an elegant and thoughtful study  of cryoprotective toxicity. The authors did not only use spectrophotometry to measure hemolysis  but also used microscopy to study the morphology of the red blood cell after exposure to various agents at different temperatures. The results of these different measurements were in turn correlated with each other in order to determine if there are general properties  affecting cryoprotectant toxicity. The authors propose that reduced toxicity can be achieved by keeping the dialectric constant of the medium and membrane close to that of an aqueous solution without solutes.  These findings can also explain why cryoprotective mixtures  of various agents (such as DMSO and formamide) can reduce toxicity.  A general rule of thumb for formulating vitrification agents with reduced toxicity seems to be to maintain most properties of water but eliminating the posibility of ice formation. It should not be a surprise that such an approach has guided the choice of solvents in areas such as cryoenzymology.

Robert White on brain death

Robert J. White is most known, or perhaps most notorious, for his work on primate head transplants. Less known, but more relevant to the practice of human cryopreservation, is his work in cerebral ischemia, hypothermia, and brain preservation. Most of White’s innovative work was published in the 1960s and 1970s. White also published a substantial number of opinion pieces on a variety of topics. One of these topics is brain death.

In an 1972 editorial for the publication Hospital Progress, “The Scientific Limitation of Brain Death,” White notes that:

…we have to acknowledge the probability that eventually all of the major cellular complexes of the human body will be replaceable either by transplanted organs (man or animal) or by sophisticated engineering modules.

As a consequence, the clinical definition of death is shifting from cardiopulmonary criteria to the central nervous system. But unlike other organs,

…this system is not replicatable, representing as it does the repository of the highest functions of man…when this elite cellular system fails it would seem reasonable to assume that what is characteristically ‘human’ is also being lost from the body.

But just as the cardio-respiratory definition of death has evolved and changed with the clinical practice of cardiopulmonary resuscitation,  a similar fate may be in store for the definition of brain death. The clinical use of general anesthesia and hypothermic circulatory arrest, in which the brain can be put “on pause,” emphasize how important the aspect of “irreversibility” is.

As presently defined, the definition of brain death puts much emphasis on brain function upon physical examination. A major limitation of this definition is that it categorically ignores the prospect that brain function could be restored in the future by technologies more advanced than practiced today, provided the material basis of brain function is preserved.

Another challenge is that the science of cryobiology has advanced to such a state where brain slices can be preserved at subzero temperatures and recovered without loss of viability through vitrification. When recovery of organized electrical activity can be demonstrated in vitrified mammalian whole brains, the prevailing definition of brain death will need to be challenged again because it will open the practical possibility to maintain critically ill people in a state of low temperature circulatory arrest without producing one of the indicators of irreversible brain death. Such advances would be an extension of the  experiments Robert White did on isolated hypothermic brains.

As White stresses in the final paragraph of his paper:

…like all biological activity, life and death merge into one another representing a continuum and the neuro-scientist can only in the final analysis determine the point of irreversibility of this highly complex system at which the possibility of organized activity that characterizes human behaviour  has been exceeded.

The healthy skeptic

Consumers are constantly bombarded with advice about health. Lower your cholesterol, avoid carbs, take dietary supplements, avoid Teflon, get a full body scan, etc. Such advice does not fall on deaf ears. Who does not want to remain healthy, look good, and extend life? Two other factors contribute to our eagerness to consume and follow health advice. First, the accelerating growth of knowledge in fields such as biology and biochemistry. Second, a reasonable assumption that if some chemicals and behaviors can harm us,  there must be chemicals and changes in behavior that can confer great benefits.

The role science plays in contemporary thinking about health is a double edged sword. On the one hand, it can be used to debunk grandiose claims about health by subjecting these claims to rigorous scientific investigation. On the other hand, the authority of  scientists can can be abused to support products or lifestyle changes for which there is little evidence. For many people and journalists, the phrase that “research proves” something is often enough to act on health recommendations, regardless of the nature and quality of the evidence. But it does make a lot of difference whether “research proves” means a small number of experiments in a test tube or a multi-country randomized human trial.

And that is where Robert J. Davis’ book The Healthy Skeptic: Cutting through the Hype about Your Health comes into play. What makes Davis’ book stand out over other books debunking contemporary health claims is that he gives the reader a set of solid guidelines to evaluate scientific statements about health in general. Another major strength is that the author does not single out one group of health hustlers but argues quite persuasively that misinformation about health is not confined to pharmaceutical companies or sellers of dietary supplements, but is rampant among government, non-profit organizations, and consumer activists as well. For example, as  the author writes about consumer activists:

Simply because they’re looking out for our welfare doesn’t necessarily mean that the public interest groups always tell us the truth. Rather than helping us, they can sometimes cause harm by frightening us unnecessarily and diverting our attention from risks that are far more important. As healthy skeptics, we need to apply the same scrutiny to their advice as we give to that from the industry-funded groups or anyone else.

The most “timeless” aspect of the book is the chapter where the author discusses the use and abuse of science in health. Before drawing our wallet or changing our diet, we can ask ourselves the following eight questions:

1. What kind of study is it (laboratory research, short-term human studies, randomized clinical trials etc.)
2. How big is the effect?
3. Could the findings be a fluke?
4. Who was studied?
5. Is there a good explanation?
6. Who paid for the research?
7. Was it peer reviewed?
8.  How does it square with other studies?

As should be clear from those questions, behind the phrase “research proves” are many shades of grey. As the author points out, the question of how a study squares with other studies is perhaps the most crucial question. There is so much (poor) research being published that almost any claim about health can be supported by scientific studies. Sellers of dietary supplements often exploit this by presenting only studies that “support” their recommendations. If health advice does not come with qualifications and/or opposing research conclusions are not mentioned at all, one should be very wary.

Perhaps the most important chapters for life extentionists are those on dietary supplements and “anti-aging doctors.” Davis gives a number of useful recommendations to evaluate claims about supplements:

– Verify “clinically proven” claims
– Don’t assume that “natural” means safe
– Be skeptical of claims that a souped-up or specifically targeted vitamin or mineral supplement is better than an ordinary one
– Don’t be swayed by weasel words (such as “maintains heart health” or “provides immune support”)
– Be wary of organizations or individuals who provide information about supplements and also sell them

When all is said and done, the book does not recommend any radical interventions to improve health or prolong life and sticks to the usual recommendations (don’t smoke, exercise, moderation in eating and drinking, etc.) This is not because of cynicism, but because the more radical claims are just not backed up by contemporary science.

Life extensionists and futurists may believe that they are mostly immune to wishful thinking and the marketing of snake oil but  they may be less immune to more subtle psychological (deadly) traps such as the belief that “this time, things are different,” or the naive assumption that all problems can be solved, given enough time and knowledge. Although progress in science can benefit from scientists that are committed to achieve  important goals like increasing the maximum life span or even defeating death altogether, in reality it is often hard to tell the difference between being motivated by such desires and simply assuming that they will be satisfied, and thus crossing the line into meliorist dogmatic belief.

An interview with the author can be found on the Amazon page for the book.

Robert Freitas discusses the future of nanomedicine

Nanotechnology idea-man Robert Freitas, Jr. has published an article in the January 2009 issue of Life Extension Magazine providing a tutorial in nanomedicine and documenting its progression toward real-world application.

In “Nanotechnology and Radically Extended Life Span,” Freitas describes several theoretical medical nanorobots, such as the microbiovore, which would “act like an artificial mechanical white cell, seeking out and digesting unwanted pathogens including bacteria, viruses, or fungi in the bloodstream.” In addition to fighting infection, medical nanorobots could invigorate old or diseased cells by replacing chromosomes with fresh new ones, correcting the cellular damage and mutations that lead to aging.

Freitas and colleagues have performed many analyses and simulations of the types of technologies and tools that will be necessary to create these nanoscale medical robots, filing two patents for the mechanosynthesis of nanorobots. Together with Ralph Merkle, Freitas founded the Nanofactory Collaboration to “coordinate a combined experimental and theoretical R&D program to design and build the first working diamandoid nanofactory.” This effort has involved many collaborations with researchers from nine different organizations and four countries, and has resulted in a dozen academic articles.

Now Freitas is eager to test his theories with the help of scanning probe microscopist Philip Moriarty, who is attempting to build several of Freitas’ mechanosynthesis tooltips. Presumably, the creation of working tooltips will lead directly to their intended purpose: the creation of nanorobots. Freitas hopes to manufacture medical nanorobots that can contribute to radical life extension therapies by the 2020s.

Of course, most cryonicists are of the opinion that nanotechnological interventions will be necessary for the reversal of aging and disease in cryopreserved patients. As we move closer to reversible cryopreservation with improved stabilization protocol and cryoprotectant solutions, perhaps the maturation of nanomedicine and cryonics will coincide.

In the past Alcor has supported Freitas’ work at the expense of supporting research that could improve the quality of its cryopreservation procedures for existing members. It is therefore encouraging to learn that the Life Extension Foundation has contributed money to support Freitas’ work on nanomedicine.

Greg Jordan on Buddhism, Epicureanism, and Immortalism

“Buddhism and Epicureanism combat the fear of death by accommodating the emotions to the reasonable certainty of death. Contemporary immortalism (which includes projects such as life extension, cryonic suspension, and universal immortalism) argues that scientific and technological solutions to the problem of death can be found, thus questioning the inevitability of death. Buddhist, Epicurean, and contemporary immortalist approaches to death and the fear of death are explored, compared, and contrasted.”

Read the complete article:

Gregory Jordan  – Fearless in the Face of Death: Buddhist Detachment, Epicurean Equanimity, and Contemporary Immortalism

Nanotechnology: The message matters

A recently conducted study brings a warning to technophiles who think that the facts are all that matter when informing a group of people about a new technology. The fact of the matter is that the message matters more.

In their article “What drives acceptance of nanotechnology?” (Nature Nanotechnology), the Cultural Cognition Project and the Project on Emerging Nanotechnologies reported that, when presented with balanced information about the benefits and risks of nanotechnology, a diverse sample of 1500 people who were largely unfamiliar with nanotechnology became deeply divided regarding its safety as compared to a group not shown such information.

The dividing line was cultural: “People who had more individualistic, pro-commerce values, tended to infer that nanotechnology is safe,” said Kahan, the lead author of the study, “while people who are more worried about economic inequality read the same information as implying that nanotechnology is likely to be dangerous.”

Seeing that people respond so differently to the same information has caused many experts in the field to call for risk-communication strategies that take these findings into account. In this way, they hope to prevent a nanotechnology “culture war”:

“The message matters,” said David Rejeski, director of the Project on Emerging Nanotechnologies. “How information about nanotechnology is presented to the vast majority of the public who still know little about it can either make or break this technology.

The purple prose of suspended animation

Esquire magazine features an article on scientist Mark Roth and his research into “suspended animation.” As the website title “The Mad Scientist Bringing Back the Dead…. Really” indicates, this is not supposed to be a detailed account of Ikaria’s recent advances in induction of depressed metabolism but a sensationalist piece on mad scientists. Although the piece states that “Ikaria’s first suspended-animation product” has “completed Phase 1 trials in Australia and Canada” and is “being tested on humans, to make sure it’s safe” it remains to be seen if this technology involves major advances in rapid induction of depressed metabolism in humans or offers just another treatment option for various hypoxic-ischemic conditions as the press release (pdf) seems to indicate.

The article misses a number of opportunities to set the record straight on the proper use of terminology and prevailing definitions of death. The ability to resuscitate an organism from circulatory arrest, depressed metabolism, or suspended animation implicates that the organism was not dead to start with. This is not just a matter of semantics. The phenomenon of death is surrounded by many cultural and religious taboos and the difference between saying that we can  bring back the dead instead of  observing that recent advances in science and medicine requires us to redefine our definition of death  is not a trivial matter. Most religious people do not object to cardiopulmonary resuscitation or hypothermic circulatory arrest because they do not believe that a patient who is resuscitated in such medical procedures was (temporarily) dead. The word death should be reserved for a condition in which integrated biological function cannot be restored by either contemporary or future technological means.

Increasingly, the phrase “suspended animation” is thrown around to describe a number of distinct phenomena ranging from modest drops in metabolism to complete metabolic arrest. If the word  is taken literally, however, only complete metabolic arrest constitutes real suspended animation. Such a state cannot be achieved in humans by the use of hydrogen sulfide (or its injectable derivatives) and requires either the use of extreme cold such as practiced through vitrification in cryonics or the use of advanced nanotechnology in warm biostasis.

Popular reports on recent developments in “suspended animation” do not carefully distinguish between the results obtained with hydrogen sulfide and carbon monoxide in C. elegans and mice and its applications in humans. Until more detailed information is available on the use of these substances in large animals or humans it should not be assumed  that rapid pharmacological induction of depressed metabolism in humans is a clinical possibility.

Eric Drexler launches Metamodern blog

Molecular nanotechnology pioneer and cryonics advocate Eric Drexler has launched his own blog called Metamodern: The Trajectory of Technology. This is what we can expect:

In this blog, I’ll discuss current progress in science and technology, often with a specific perspective in mind: how current progress can contribute to the development of advanced nanosystems. This system-building perspective often highlights research opportunities and rewards that might otherwise be missed. As the topics come up, I’ll be suggesting research objectives that seem practical, valuable, and ready for serious pursuit.

However, like Engines of Creation, this blog isn’t intended to be “about nanotechnology”, but about broader issues involving technologies that will bring global change. Social software and the computational infrastructure of society are high on the list.

In his first post Drexler talks about the data explosion and the scientific method:

Tradition demands that science always be hypothesis-driven: First, try to guess the truth, and only afterward collect experimental data to test whether the guess predicts the results. Indeed, this has been termed “The Scientific Method”. The new data-driven approach suggests that we collect data first, then see what it tells us. This becomes practical when experimental methods can amass enormous amounts of data, enough data to test more hypotheses than any mortal scientist could conceivably imagine.

Eric Drexler has received a fair amount of uninformed and some informed criticism over the years. It is therefore encouraging to see Drexler making his presence known online.

HT Overcoming Bias

Richard Dawkins on fashionable nonsense

The Dutch psychologist Piet Vroon once opined that philosophy has lost much of its relevance because it  has lost touch with the (natural) sciences. Although philosophers associated with logical positivism and critical rationalism made great efforts to discipline the practice of philosophy by encouraging logical thinking and verification (or falsification), so far their efforts must be considered a failure, as evidenced by the fact that their scientific perspective is usually classified as just another school of thought within contemporary philosophy. A symptom of this development is that we often see the word “philosophy” substituted for “opinion.” It should not be surprising, then, that many life extensionists are greatly skeptical of disciplines like bioethics. As a general rule, when all is said and done, and the “learned” rhetoric has been dissected, there is not much left other than the philosopher’s personal opinion.

This 2007 review by Richard Dawkins’ of Intellectual Impostures by Alan Sokal and Jean Bricmont  reminds us how much pretentious unscientific nonsense is circulating among “intellectuals.” Although the examples of continental philosophy that Dawkins discusses represent the extreme regions of academia, a lot of philosophy and “social science” that is dominating contemporary intellectual debate, and informing public policies, is still miles away from the disciplined approach to science that thinkers like Alfred Ayer and Karl Popper advocated in their writings.

Whereas the natural sciences have mostly remained sane because of the strong link between experimental science and practical applications, such mechanisms are often absent in the social sciences.  And to the extent social science is “applied,” the question of what constitutes success is (necessarily) arbitrary. This situation is further aggravated by the fact that many social scientists and philosophers are sheltered from market mechanisms and real accountability.

Scientific skeptics have sometimes been criticized for focusing too much time on phenomena such as parapsychology, astrology, tarot reading and UFOs at the expense of more widely shared superstition such as mainstream religion. Similarly, concerned scientists tend to focus on fashionable nonsense such as postmodernism and  post-structuralism at the expense of more widespread ideas such as the epistemological problems in most social science or the extreme “blank slate” view of human nature that informs most public policy. Most people may not believe that astrologists can predict the future, but we seem to have fewer problems when similar claims to knowledge are expressed by social scientists and economists.