Support real progress in life extension

As we start the new year, it is helpful to draw attention to the sobering fact that no credible human rejuvenation therapies are available today, and it is doubtful that such therapies will see the light of day in the short term. Greg Fahy’s recent monumental collection of  interventive gerontology articles, The Future of Aging: Pathways to Human Life Extension (review forthcoming in Cryonics magazine), leaves little doubt about this predicament. It should also be emphasized that, with the possible exception of Robert Freitas’s comprehensive nanomedical overhaul of human biology, none of the envisioned strategies for life extension and rejuvenation (including SENS) confer increased protection to the brain in the case of severe traumatic insults or accidents. This fact alone highlights the fundamental importance of cryonics as  the core element in life extension. The idea that rejuvenation will make cryonics redundant has been one of the main obstacles for young people to engage in cryonics activism.

There is a broad consensus in the life extension community that more resources need to be allocated to combating aging as such, as opposed to increasingly futile efforts to extend life by treating aging-associated diseases. Unfortunately, the objective to launch a serious rejuvenation research program has limited mass appeal so far. As a consequence, we will have to get involved ourselves. Hopefully we can shift the focus from extensive hypothetical discussion about the consequences of human enhancement technologies to supporting and engaging in real experimental research to make these technologies facts of life.

In line with the foregoing observations, we suggest to consider the following areas for your support.

1. Cryonics. The first sensible step is making cryonics arrangements. Without cryonics arrangements you may not be able reap the benefits of anti-aging and rejuvenation treatments. Without cryonics arrangements you will remain vulnerable to a large number of personality-destroying diseases and accidents. In addition to making cryonics arrangements, support the major cryonics organizations and their research efforts.

2. Chemical Brain Preservation. Chemical brain preservation is an envisioned alternative (or complement) for human cryopreservation. At this point, there are no organizations offering chemopreservation of the brain but there is a new organization that aims to research the technical feasibility of the procedure.

3. Rejuvenation Research. The emphasis of interventive gerontology should be on rejuvenation as opposed to extending the maximum human lifespan by halting or slowing aging. Interventions aimed at rejuvenation have the distinct advantage that short-term empirical validation of their efficacy is possible. Rejuvenation therapies may include genetic manipulation, regenerative medicine, organ replacement and reversal of accumulated damage. A this stage of our knowledge, no privileged position should be claimed for any approach absent hard empirical breakthroughs in rejuvenation.

4. Nanomedicine Research. The logical evolution of medicine is to intervene at a progressively smaller scales. From “crudely” cutting into tissue, to pharmacology, to manipulating bio-molecules at the molecular level, nanomedical control of morbidity and aging is a prerequisite for resuscitation of cryonics patients and comprehensive rejuvenation. Biological and mechanical pathways to nanomedicine have been outlined. Whatever your position is on the relative technical merits and projected timelines  of such alternative approaches, the evolution of medicine into nanomedicine should be supported and accelerated.

How many neurons need to survive for cryonics to work?

On this page a calculation is attempted to determine how many neurons need to survive for cryonics to work. The flaw in this approach should be obvious when the author writes :

According to The Stroke Association, a stroke is a brain injury with effects which may include difficulty thinking, learning, concentrating, remembering, making decisions, reasoning and planning. Rehabilitation consists of relearning skills, not having your brain recover naturally.

So a reasonable position is that the cryonic chilling process should cause less damage to the brain than a stroke

The debilitating effects of a stroke are the result of the (delayed) neuronal death that follows an ischemic insult to the brain. In cryonics, biochemical or freezing damage to cells does not necessarily produce irreversible cell death because damaged cells are stabilized by cold temperatures. As such, morphological preservation of brain cells can co-exist with loss of viability. Therefore, securing viability of brain cells is a sufficient but not a necessary condition for resuscitation of cryonics patients.  Future cell repair technologies are assumed to infer the original viable state of the cells from their morphological properties.

This does not mean that conventional stroke research does not have any relevance for evaluating the technical feasibility of cryonics. Extensive delays between the pronouncement of legal death and the start of cryonics procedures could alter the structural properties of cells to such a degree that meaningful resuscitation is even problematic with advanced nanomedical cell repair technologies. This is one of the reasons why Alcor complements the cryopreservation process with stabilization procedures to secure viability of the brain after pronouncement of legal death.

Cryonics Oregon june meeting report

About 35 people attended the Cryonics Oregon-sponsored debate on the subject of SENS. Chana de Wolf was mistress of ceremonies. A show of hands indicated that the great majority of those attending were signed-up cryonicists. There was a sizeable contingent of CI Members who drove down from Seattle for the event. One was Eron Hennessey who bid $100 for an autographed Nanomedicine book by Robert Freitas that was auctioned for the benefit of James Swayze (who also attended the event). The money will be kept by Cryonics Oregon to help pay for equipment  for James. Jordan Sparks has offered to build a portable  ice bath that is large enough for James.

About five people came to the event who were non-cryonicists attending the American Aging Association conference, three of whom I brought in a taxi. A biogerontologist cryobiologist who wishes not to be named also attended.

Dr. de Grey began the debate with his standard presentation explaining the SENS program. After I presented my critique, the cryobiologist took the stage and gave his critique of SENS. Aubrey started by answering the cryobiologist, although he commented on a couple of my points. He and the cryobiologist were soon in an active exchange which went on for a while. It became evident to me the Aubrey was not going to get  around to answering my critique in the remaining 15 minutes of the 2-hour booking for the room. I interrupted Aubrey and the cryobiologist suggesting that questions should  be taken from the floor. Aschwin de Wolf added his critique to the debate, and he was followed by others.

There was not much time for socializing, but there was enough for most of us to have a few brief and rewarding conversations with people we had not seen for a while as well as others we were meeting for the first time.  A few Alcor and CI brochures were taken. One man with a CI brochure expressed interest in having cryonics  arrangements with both CI and Alcor. I told him that CI allows those with dual arrangements to have CI as a backup service provider. Alcor allows dual arrangements, but always insists that Alcor be the primary service provider, and that Alcor can never be the backup.

Revival of cryonics patients literature

There is a growing literature that discusses the technical aspects of revival of cryonics patients. The following list of the published literature was compiled by Ralph Merkle and Robert Freitas and published as an appendix of their article on molecular nanotechnology in Cryonics Magazine 2008-4:

Robert C.W. Ettinger, The Prospect of Immortality, Doubleday, NY, 1964

Jerome B. White, “Viral Induced Repair of Damaged Neurons with Preservation of Long-Term Information Content,” Second Annual Cryonics Conference, Ann Arbor MI, 11 April 1969

Michael G. Darwin, “The Anabolocyte:  A Biological Approach to Repairing Cryoinjury,” Life Extension Magazine (July-August 1977):80-83

Thomas Donaldson, “How Will They Bring Us Back, 200 Years From Now?” The Immortalist 12 (March 1981):5-10

K. Eric Drexler, Engines of Creation:  The Coming Era of Nanotechnology, Anchor Press/Doubleday, New York, 1986, pp. 133-138

Brian Wowk, “Cell Repair Technology,” Cryonics 9(July 1988)

Mike Darwin, “Resuscitation: A Speculative Scenario for Recovery,” Cryonics 9(July 1988):33-37

Thomas Donaldson, “24th Century Medicine,” Analog 108(September 1988):64-80 and Cryonics 9(December 1988)

Ralph C. Merkle, “Molecular Repair of the Brain,” Cryonics 10(October 1989):21-44

Gregory M. Fahy, “Molecular Repair Of The Brain: A Scientific Critique, with a Response from Dr. Merkle,” Cryonics 12(February 1991):8-11 & Cryonics 12(May 1991);  “Appendix B. A ‘Realistic’ Scenario for Nanotechnological Repair of the Frozen Human Brain,” in Brian Wowk, Michael Darwin, eds., Cryonics: Reaching for Tommorow, Alcor Life Extension Foundation, 1991

Ralph C. Merkle, “The Technical Feasibility of Cryonics,” Medical Hypotheses 39(1992):6-16

Ralph C. Merkle, “The Molecular Repair of the Brain,” Cryonics 15(January 1994):16-31 (Part I) & Cryonics 15(April 1994):20-32 (Part II)

Ralph C. Merkle, “Cryonics, Cryptography, and Maximum Likelihood Estimation,” First Extropy Institute Conference, Sunnyvale CA, 1994

Ralph Merkle, “Algorithmic Feasibility of Molecular Repair of the Brain,” Cryonics 16(First Quarter 1995):15-16

Michael V. Soloviev, “SCRAM Reanimation,” Cryonics 17(First Quarter 1996):16-18

Mikhail V. Soloviev, “A Cell Repair Algorithm,” Cryonics 19(First Quarter 1998):22-27

Robert A. Freitas Jr., “Section 10.5 Temperature Effects on Medical Nanorobots,” in Nanomedicine, Volume I: Basic Capabilities, Landes Bioscience, Georgetown, TX, 1999, pp. 372-375

Ralph C. Merkle, Robert A. Freitas Jr., “A Cryopreservation Revival Scenario using MNT,” Cryonics 30(Fourth Quarter 2008).

Robert Freitas discusses the future of nanomedicine

Nanotechnology idea-man Robert Freitas, Jr. has published an article in the January 2009 issue of Life Extension Magazine providing a tutorial in nanomedicine and documenting its progression toward real-world application.

In “Nanotechnology and Radically Extended Life Span,” Freitas describes several theoretical medical nanorobots, such as the microbiovore, which would “act like an artificial mechanical white cell, seeking out and digesting unwanted pathogens including bacteria, viruses, or fungi in the bloodstream.” In addition to fighting infection, medical nanorobots could invigorate old or diseased cells by replacing chromosomes with fresh new ones, correcting the cellular damage and mutations that lead to aging.

Freitas and colleagues have performed many analyses and simulations of the types of technologies and tools that will be necessary to create these nanoscale medical robots, filing two patents for the mechanosynthesis of nanorobots. Together with Ralph Merkle, Freitas founded the Nanofactory Collaboration to “coordinate a combined experimental and theoretical R&D program to design and build the first working diamandoid nanofactory.” This effort has involved many collaborations with researchers from nine different organizations and four countries, and has resulted in a dozen academic articles.

Now Freitas is eager to test his theories with the help of scanning probe microscopist Philip Moriarty, who is attempting to build several of Freitas’ mechanosynthesis tooltips. Presumably, the creation of working tooltips will lead directly to their intended purpose: the creation of nanorobots. Freitas hopes to manufacture medical nanorobots that can contribute to radical life extension therapies by the 2020s.

Of course, most cryonicists are of the opinion that nanotechnological interventions will be necessary for the reversal of aging and disease in cryopreserved patients. As we move closer to reversible cryopreservation with improved stabilization protocol and cryoprotectant solutions, perhaps the maturation of nanomedicine and cryonics will coincide.

In the past Alcor has supported Freitas’ work at the expense of supporting research that could improve the quality of its cryopreservation procedures for existing members. It is therefore encouraging to learn that the Life Extension Foundation has contributed money to support Freitas’ work on nanomedicine.

Eric Drexler launches Metamodern blog

Molecular nanotechnology pioneer and cryonics advocate Eric Drexler has launched his own blog called Metamodern: The Trajectory of Technology. This is what we can expect:

In this blog, I’ll discuss current progress in science and technology, often with a specific perspective in mind: how current progress can contribute to the development of advanced nanosystems. This system-building perspective often highlights research opportunities and rewards that might otherwise be missed. As the topics come up, I’ll be suggesting research objectives that seem practical, valuable, and ready for serious pursuit.

However, like Engines of Creation, this blog isn’t intended to be “about nanotechnology”, but about broader issues involving technologies that will bring global change. Social software and the computational infrastructure of society are high on the list.

In his first post Drexler talks about the data explosion and the scientific method:

Tradition demands that science always be hypothesis-driven: First, try to guess the truth, and only afterward collect experimental data to test whether the guess predicts the results. Indeed, this has been termed “The Scientific Method”. The new data-driven approach suggests that we collect data first, then see what it tells us. This becomes practical when experimental methods can amass enormous amounts of data, enough data to test more hypotheses than any mortal scientist could conceivably imagine.

Eric Drexler has received a fair amount of uninformed and some informed criticism over the years. It is therefore encouraging to see Drexler making his presence known online.

HT Overcoming Bias

Antioxidant skepticism

At the blog Fight Aging!, Reason draws attention to the possibility that taking large amounts of antioxidant supplements may not necessarily be an improvement:

Our biology is complex – why would we expect that successfully modifying it with chemicals would be as simple as eating those chemicals? Ingesting antioxidants in the hope of benefit because they happen to do certain things in certain portions of your biochemistry is magical thinking given the evidence on the table to date.

And as the author points out, and contrary to popular perception, free radicals play positive roles in the human body as well. A similar point was made by critical care researcher and cryonics activist, Dr. Steve Harris on usenet in 2002:

Free radicals are the signals used by the body’s inflammatory system, which is necessary for infection-fighting, normal healing, and for fighting some (not all) kinds of cancer.  Free radicals (including deliberately produced ones like NO) aren’t just garbage to be expunged in every possible way you can think of, but rather instead are often important signals, not to be ignored. You can’t just willy-nilly shotgun them, and the system which uses them, out of existence for long, without expecting to pay a price. Nature didn’t give it all of that complicated radical-producing and radical-sensing machinery to you, for nothing.

Dr. Harris himself observed the price that may be paid when he participated in the Critical Care Research canine cerebral resuscitation experiments:

I’ve given large doses of vitamin E, melatonin, PBN, NOS inhibitors, COX inhibitors, basically the anti-radical anti-inflammation works, to dogs in resuscitation trials. This works great on the brain but occasionally I see a dog get pneumonia, and some of them die from it, with complete lung consolidation, in as little as 12-24 hours, despite heavy IV antibiotics. And in a very odd way: no fever, no left-shifted neutrophils, no increased heart rate, no shock (except at the hypoxic end). The last time I saw anything like that as a physician was treating leukemic patients with no neutrophils. These dogs have neutrophils, but they’re just not working.

Aggressive antioxidant treatment has a place in the treatment of stroke and cardiac arrest but to implement such an aggressive regime in the hope of fighting aging may be wishful thinking at best, and dangerous at worst. In general, many claims about the beneficial effects of dietary supplements should be approached with skepticism.

Any credible future treatment to slow or reverse aging will require interventions that specifically target the mechanisms of aging and/or remove their damaging effects without disturbing the general biochemistry of the human body. Whether such interventions will be possible without advanced nanomedical modification of human biology remains to be seen.